Автор: Пользователь скрыл имя, 19 Сентября 2011 в 18:06, реферат
Аэробное окисление в биологических прудах представляет собой процесс минерализации органических веществ под действием микроорганизмов, обитающих в воде. Биологические пруды - это водоемы, в которых создаются наиболее благоприятные для жизнедеятельности микроорганизмов условия (небольшая глубина, отсутствие течений, большое количество микроводорослей, насыщающих воду кислородом, обилие простейших, питающихся бактериями и т.п.).
Энергетическим "топливом", перерабатываемым в ЦТК, служат не только углеводы, но и жирные кислоты (после предварительной деградации до ацетил-КоА), а также многие аминокислоты (после удаления аминогруппы в реакциях дезамини-рования или переаминирования). В результате одного оборота цикла происходят 2 декарбоксилирования, 4 дегидрирования и 1 фосфорилирование. Итогом 2 декарбоксилирований является выведение из цикла 2 атомов углерода (2 молекулы CO2), т. е. ровно столько, сколько его поступило в виде ацетильной группы. В результате 4 дегидрировании образуются 3 молекулы НАД-H2 и 1 молекула ФАД-H2. Как можно видеть, в процессе описанных выше превращений весь водород оказывается на определенных переносчиках и задача теперь — передать его через другие переносчики на молекулярный кислород.
Как представлено это у эубактерий? С определенными последовательностями ферментативных реакций, аналогичных тем, которые имеют место в ЦТК, мы встречаемся у эубактерий, находящихся на разных этапах эволюционного развития. Некоторые реакции цикла функционируют в анаэробных условиях у бактерий, получающих энергию в процессах брожения.
У пропионовых бактерий в последовательность реакций брожения, ведущих к синтезу пропионовой кислоты, "вмонтированы" реакции от янтарной кислоты до ЩУК, аналогичные таковым ЦТК, но идущие в противоположном направлении и связанные на двух этапах с восстановлением субстратов реакций (см. рис. 54). В пропионовокислом брожении эти реакции функционируют для акцептирования водорода, являясь одним из вариантов решения донор-акцепторной проблемы в анаэробных условиях.
У других эубактерий
мы встречаемся с более полно
сформированной последовательностью
реакций, аналогичных ЦТК, но еще
не замкнутых в полный цикл. Наиболее
часто отсутствует
ДЫХАТЕЛЬНАЯ ЦЕПЬ
Электроны с восстановленных переносчиков (НАД-H2, НАДФ-H2, ФАД-H2), образующихся при функционировании ЦТК или окислительного пентозофосфатного цикла, поступают в дыхательную цепь, где проходят через ряд этапов, опускаясь постепенно на все более низкие энергетические уровни, и акцептируются соединением, служащим конечным акцептором электронов. Перенос электронов приводит к значительному изменению свободной энергии в системе. В наиболее совершенном виде и единообразии дыхательная цепь предстает у эукариот, где она локализована во внутренней мембране митохондрий. У эубактерий дыхательные цепи поражают разнообразием своей конкретной организации при сохранении принципиального сходства в строении и функционировании.
Дыхательные электронтранспортные цепи состоят из большого числа локализованных в мембране переносчиков, с помощью которых электроны передаются или вместе с протонами, т. е. в виде атомов водорода, или без них. Компонентами цепи, локализованными в мембране, являются переносчики белковой (флавопротеины, FeS-белки, цитохромы) или небелковой (хиноны) природы. Флавопротеины и хиноны осуществляют перенос атомов водорода, а FeS-белки и цитохромы — электронов.
НАД(Ф)-зависимые дегидрогеназы, катализирующие отрыв водорода от молекул различных субстратов и передающие его на стартовый переносчик дыхательной цепи — НАД(Ф)-H2-дегидрогеназу, — растворимые ферменты. Дегидрогеназы флавопротеиновой природы, выполняющие аналогичную функцию, могут быть локализованными в мембране (например, сукцинатдегидрогеназа) или существовать в растворимой форме (ацетил-КоА-дегидрогеназы жирных кислот). Водород с них поступает в дыхательную цепь на уровне хинонов.
Известно более 250 НАД(Ф)-зависимых дегидрогеназ, активно участвующих в реакциях промежуточного обмена. Но не все из них имеют отношение к энергетическому метаболизму. С помощью дегидрогеназ осуществляется перенос гидрид-иона (2e– + Н+ ® H–) от субстрата к НАД(Ф), при этом в среду переходит протон (рис. 93, А). Атом водорода входит в состав пиридинового кольца, а электрон присоединяется к азоту пиридинового кольца. После восстановления НАД(Ф)-H2 отщепляется от активного центра фермента и переносится к мембране, где акцептируется флавиновой дегидрогеназой и передает ей восстановительные эквиваленты. Одновременно к дегидрогеназе, освобожденной от кофермента, присоединяется окисленная молекула НАД(Ф), поступающая из среды. Таким образом, особенность НАД(Ф) — их подвижность, позволяющая им курсировать от молекул — доноров электронов, находящихся в цитоплазме, к акцепторам электронов, локализованным в мембране.
В состав флавиновых
дегидрогеназ входят флавиновые нуклеотиды,
прочно связанные с апоферментом
и не отщепляющиеся от него ни на
одной стадии каталитического цикла.
Окислительно-
Рис. 93. Механизмы обратимого окисления и восстановления некоторых переносчиков водорода: А — пиридиновое кольцо НАД(Ф); Б — изоаллоксазиновое кольцо рибофлавина ФМН или ФАД; В — хиноидное кольцо. Присоединенные атомы водорода и электрон пиридинового кольца обведены пунктиром (по Dagley, Nicholson, 1973) |
Участие в дыхательном электронном транспорте принимают белки, содержащие железосероцентры (см. рис. 58). Они входят в состав некоторых флавопротеинов, например сукцинат- и НАД(Ф)-H2-дегидрогеназ, или же служат в качестве единственных простетических групп белков. Дыхательные цепи содержат большое число FeS-центров. В митохондриальной электронтранспортной цепи функционирует, вероятно, около дюжины таких белков. В зависимости от строения FeS-центры могут осуществлять одновременный перенос 1 или 2 электронов, что связано с изменением валентности атомов железа.
Хиноны — жирорастворимые соединения, имеющие длинный терпеноидный "хвост", связанный с хиноидным ядром, способным к обратимому окислению — восстановлению путем присоединения 2 атомов водорода (рис. 93, В). Наиболее распространен убихинон, функционирующий в дыхательной цепи на участке между флавопротеинами и цитохромами. В отличие от остальных электронных переносчиков хиноны не связаны со специфическими белками. Небольшой фонд убихинона растворен в липидной фазе мембран.
Цитохромы, принимающие участие на заключительном этапе цепи переноса электронов, представляют собой группу белков, содержащих железопорфириновые простетические группы (гемы). С помощью цитохромов осуществляется перенос электронов, в процессе которого меняется валентность железа:
Fe2+ « Fe3+ + e–
В митохондриях
обнаружено пять цитохромов (b, c,
c1, a, a3), различающихся
между собой спектрами поглощения и окислительно-
Рис. 94. Схема переноса электронов в дыхательной цепи митохондрий: ФМН — простетическая группа НАД(Ф)-H2 — дегидрогеназы; ФАД — простетическая группа сукцинатдегидрогеназы; УХ — убихинон; b, c, с1, а, a3 — цитохромы. Сплошными линиями обозначены процессы, протекающие в мембране; прерывистыми — в цитозоле клетки; зигзагообразной линией показаны места действия ингибиторов |
Таким образом,
дыхательная цепь переноса электронов
в митохондриях состоит из большого
числа промежуточных
Обнаружены ингибиторы, специфически действующие на определенные участки дыхательной цепи. Амитал и ротенон блокируют перенос электронов на участке до цитохрома b, действуя предположительно на НАД(Ф)-H2-дегидрогеназу. Антимицин А (антибиотик, продуцируемый Streptomyces) подавляет перенос электронов от цитохрома b к цитохрому c1. Цианид, окись углерода и азид блокируют конечный этап переноса электронов от цитохромов a + a3 на молекулярный кислород, ингибируя цитохромоксидазу. Если блокировать перенос электронов в электронтранспортной цепи определенными ингибиторами, то переносчики, находящиеся на участке от субстрата до места действия ингибитора, будут в восстановленной, а переносчики за местом действия ингибитора — в окисленной форме.
Рис. 95. Дыхательные цепи Azotobacter vinelandii (A). Micrococcus lysodeikticus (Б) и Escherichia coli (В) в аэробных (1), микроаэробных (2) и анаэробных (3) условиях: ФП — флавопротеин; FeS — железосероцентр; УХ — убихинон; MX — менахинон; ФР — фумаратредуктаза; b, c, c1, a, a3 — цитохромы |
Какие формы организации дыхательной цепи обнаружены у эубактерий, т. е. на определенных подступах к ее окончательному формированию? Группы первично анаэробных хемогетеротрофов не имеют развитой системы связанного с мембранами электронного транспорта. Полностью сформированной системой дыхательного электронного транспорта обладают фотосинтезирующие эубактерии: цианобактерии, многие пурпурные бактерии (в наибольшей степени дыхание развито у несерных пурпурных бактерий). Все облигатно и факультативно аэробные хемотрофы имеют дыхательные цепи. У разных групп эубактерий они значительно различаются по составу, что выражается в следующем: замене одних переносчиков другими со сходными свойствами (убихинон — менахинон, цитохромы aa3 — o и т. д.); добавлении или удалении какого-либо переносчика (например, цитохрома c); разветвлении на уровне первичных дегидрогеназ, являющемся результатом множества мест включения восстановительных эквивалентов с окисляемых субстратов в цепь, и ветвлении, связанном с присутствием 2 или более цитохромоксидаз. Дыхательные цепи некоторых хемогетеротрофных эубактерий приведены на рис. 95.
ЗАПАСАНИЕ КЛЕТОЧНОЙ ЭНЕРГИИ В ПРОЦЕССЕ ДЫХАНИЯ
Вся система переноса электронов от субстрата на O2 через длинную цепь переносчиков представлялась бы нерационально громоздкой, если бы единственной целью процесса было соединение электронов с молекулярным кислородом. Другое назначение этого механизма состоит в запасании освобождающейся в процессе электронного переноса энергии путем трансформирования ее в химическую энергию фосфатных связей.
Имеющиеся экспериментальные данные подтверждают выдвинутый в начале 60-х гг. английским биохимиком П. Митчеллом хемиосмотический механизм энергетического сопряжения электронного транспорта с фосфорилированием. П. Митчелл "обратил внимание" на судьбу протонов при электронном транспорте, которые переносятся в этом процессе через мембрану в одном направлении, создавая градиент концентрации H+ по обе стороны мембраны (см. рис. 25). Перенос электронов и протонов обеспечивается определенным сорасположением мембранных переносчиков, а также свойствами самой мембраны, в первую очередь ее непроницаемостью для протонов.
Информация о работе Аэробное и анаэробное окисление микроорганизмов