Биоиндикация экосистем цементного завода

Автор: Пользователь скрыл имя, 29 Апреля 2012 в 16:27, курсовая работа

Описание работы

Объект исследования – биоиндикация экосистем Себряковского цементного завода
Предмет исследования влияние выбросов от производственной деятельности цементного на экосистемы города завода
Цель нашей курсовой работы – изучить влияние выбросов от производственной деятельности цементного завода на сосну и одуванчик

Работа содержит 1 файл

Курсовая.doc

— 470.50 Кб (Скачать)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2 – Типы чувствительности биоиндикаторов

Условия, определяемые с помощью биоиндикаторов, называются условиями биоиндикации. Ими могут быть типы природных объектов (почва, вода, воздух), различные свойства этих объектов (механический, химический состав и др.) и определенные процессы (эрозия, дефляция, заболачивание и т.п.) происходящие, в том числе под влиянием человека.

Существуют различные виды биоиндикации. Если одна и та же реакция вызывается различными факторами, то говорят о неспецифической биоиндикации. Если же те или иные происходящие изменения можно связать только одним фактором, то речь идет о специфической биоиндикации.

Например, лишайники и хвойные деревья могут характеризовать чистоту воздуха и наличие промышленных загрязнений в местах их произрастания. Видовой состав животных и низших растений, обитающих в почве, является специфическим для различных почвенных комплексов [15].

Основой задачей биоиндикации является разработка методов и критериев, которые могли бы адекватно отражать уровень антропогенных воздействий с учетом комплексного характера загрязнения и диагностировать ранние нарушения в наиболее чувствительных компонентах биотических сообществ. Биоиндикация, как и мониторинг, осуществляется на различных уровнях организации биосферы: макромолекулы, клетки, органа, организма, популяции, биоценоза [Биоиндикация: теория.., 1994]. Очевидно, что сложность живой материи и характера ее взаимодействия с внешними факторами возрастает по мере повышения уровня организации. В этом процессе биоиндикация на низших уровнях организации должна диалектически включаться в биоиндикацию на более высоких уровнях, где она предстает в новом качестве и может служить для объяснения динамики более высокоорганизованной системы.

Считается, что использование метода биоиндикации позволяет решать задачи экологического мониторинга в тех случаях, когда совокупность факторов антропогенного давления на биоценозы трудно или неудобно измерять непосредственно. К сожалению, современная практика биоиндикации носит в значительной мере феноменологический характер, выраженный в пространном изложении подмеченных исследователем фактов поведения различных видов организмов в конкретных условиях среды. Иногда эти описания сопровождаются не всегда обоснованными выводами, носящими, как правило, сугубо оценочный характер (типа "хорошо / плохо", "чисто / грязно" и т.д.), основанными на чисто визуальных методах сравнения или использовании недостаточно достоверных индексов. Чаще всего такой "прогноз" делается, когда "общественное" мнение по конечному результату оценки качества экосистемы уже заранее известно, например, по прямым или косвенным параметрам среды. 

 

1.2. Особенности использования растений в качестве биоиндикаторов

Как известно, воздух представляет собой смесь определённых газов, повсюду на Земле представленных приблизительно в равных объёмных долях, загрязнение воздуха имеет место в том случае, если в смеси имеются вещества в таких количествах и так долго, что создают опасность для человека, животных растений или имущества.

С помощью растений можно проводить биоиндикацию всех природных сред. Индикаторные растения используются при оценке механического и кислотного состава почв, их плодородия. Увлажнения и засоления, степени минерализации грунтовых вод и степени загрязнения атмосферного воздуха газообразными соединениями, а также при выявлении трофических свойств водоемов и степени их загрязнения поллютантами. Например, на содержание в почве свинца указывают виды овсяницы; цинка – виды фиалки, ярутки; меди и кобальта – смолевки, многие злаки и мхи.

Чувствительные фитоиндикаторы указывают на присутствие загрязняющего вещества в воздухе или почве ранними морфологическими реакциями – изменением окраски листьев (появление хлорозов; желтая, бурая или бронзовая окраска), различной формы некрозами, преждевременным увяданием и опадением листвы. У многолетних растений загрязняющие вещества вызывают изменение размеров, формы, количества органов, направление роста побегов или изменение плодовитости. Подобные реакции обычно неспецифичны [1].

Некоторые естественные факторы могут вызывать симптомы, сходные с антропогенными нарушениями. Так, например, хлороз листьев может быть вызван недостатком железа в почве или ранним заморозком. Поэтому при определении морфологических изменений у растений необходимо учитывать возможность действия других повреждающих факторов.

Индикаторы другого типа представляют собой растения-аккумуляторы. Они накапливают в своих тканях загрязняющее вещество или вредные продукты метаболизма, образуемые под воздействием загрязняющих веществ, без видимых изменений. При превышении порога токсичности ядовитого вещества для данного вида проявляются различные ответные реакции, выражающиеся в изменении скорости роста и длительности фенологических фаз, биометрических показателей и, в конечном счете, снижение продуктивности.

Оценку чистоты воздуха можно проводить с помощью высших растений. Например, голосеменные – отличные индикаторы чистоты атмосферы, Возможно также изучение мутаций в волосках тычиночных нитей традесканции. Французские учёные подметили, что при увеличении в воздухе окиси углерода и окислов азота, выбрасываемых двигателями внутреннего сгорания, окраска её тычиночных нитей меняется от синей к розовой. Последствия нарушений в индивидуальном развитии растений могут быть выявлены также по частоте встречаемости морфологических отклонений  (фенодивиантов), величие показателей флуктуирующей асимметрии (отклонение от совершенной билатеральной и радиальной симметрии), методом анализа сложноорганизованных комплексных структур (фрактал-анализ). Уровни любых отклонений от нормы оказываются минимальными лишь при оптимальных условиях и возрастают при любых  стрессирующих воздействиях.

Получить точные количественные данные о динамике и величине стрессовых воздействий на основе морфологических изменений невозможно, но можно довольно точно определить величину потерь продукции и, имея график зависимости «доза – эффект», рассчитать величину стрессового воздействия.

Б. В. Виноградов классифицировал индикаторные признаки растений как флористические, физиологические, морфологические и фитоценотические. Флористическими признаками являются различия состава растительности изучаемых участков, сформировавшихся вследствие определенных экологических условий. Индикаторное значение имеет как присутствие, так и отсутствие вида. К физиологическим признакам относятся особенности обмена веществ растений, к анатомо-морфологическим признакам – особенности внутреннего и внешнего строения, различного рода аномалий развития и новообразования, к фитоценотическим признакам – особенности структуры растительного покрова: обилие и рассеянность видов растений, ярусность, мозаичность, степень сомкнутости [6].

Очень часто в целях биоиндикации используются различные аномалии роста и развития растения – отклонение от общих закономерностей. Гигантизм и карликовость многие исследователи считают уродствами. Например, избыток в почве меди вдвое уменьшает размеры калифорнийского мака, а избыток свинца приводит к карликовости смолевки. В целях биоиндикации представляют интерес различные деформации растений (представлено на рисунке 3).

а.    фасциация – лентовидное уплощение и сращение стеблей, корней и цветоносов;

б.    махровость цветков, в которых тычинки превращаются в лепестки;

в.    пролификация – прорастание цветков и соцветий;

г.    асцидия – воронковидные, чащевидные и трубчатые листья у растений с пластинчатыми листьями;

д.    редукция – обратное развитие органов растений, вырождение;

е.    нитевидность – нитчатая форма листовой пластинки;

ж.    филлодий тычинок – превращение их в плоское листовидное образование [13].

Индикаторные растения могут использоваться как для выявления отдельных загрязнений воздуха, так и для оценки общего состояния воздушной среды.

Хвойные породы, помимо их высокой радиочувствительности, особенно сильно страдают от сернистого газа. Чувствительность к нему убывает в последовательности: ель – пихта – сосна веймутова и обыкновенная – лиственница. Продолжительность жизни хвои сосны в нормальных условиях составляет 3 – 4 года. За это время она накапливает такое количество сернистого газа, которое существенно превышает пороговое значение.

Рис. 3 – Деформации растений

Под влиянием токсиканта хвоя сосны в зонах сильного загрязнения становится темно-красной, окраска распространяется от основания иглы к ее острию, и, просуществовав всего один год, хвоя отмирает и опадает. Лиственница, ежегодно сбрасывающая хвою, значительно устойчивее к сернистому газу. Поэтому по продолжительности жизни хвои сосны и характеру некрозов можно определить степень поражения сосновых насаждений сернистым газом [7].

По наблюдению ученых толщина воскового слоя на хвое сосны тем больше, чем выше концентрация или продолжительность воздействия на нее сернистого газа. Это послужило основанием для разработки количественного метода индикации данного соединения в атмосфере. Суть метода «помутнения по Гертелю» заключается в том, что степень помутнения экстракта хвои прямо пропорциональна количеству воска, покрывающего хвою. Чем выше мутность, устанавливаемая фотоколориметрически, тем больше концентрация сернистого газа в воздухе. Однако современные исследования показали, что помутнение водного экстракта из хвои вызвано не только воском, но и целым рядом других веществ, присутствующих в растительных тканях. В связи с этим возникли сомнения относительно достоверности результатов теста по Гертелю. Между тем накопление эпикутикулярного воска под влиянием сернистого газа обнаружено и у других растений, например у райграса. По этой причине, возможно, следует определять не интенсивность помутнения экстракта, а непосредственно содержание воска в растительном материале [7].

Вместе с тем двуокись серы вызывает у сосны обыкновенной характерные изменения в содержании фенольных соединений, которые наблюдаются задолго до появления видимых симптомов повреждения. Данное явление можно рассмотреть на рисунке 4.

Рис. 4 Классы повреждения хвои:

1 – хвоинки без пятен; 2 – хвоинки с небольшим числом мелких пятен; 3 – хвоинки с большим числом черных и желтых пятен. Классы усыхания: 1 – на хвоинках нет сухих участков; 2 – на хвоинках усох кончик 2 – 5 мм; 3 – усохла 1/3 хвоинки; 4 – вся или большая часть хвоинки сухая [6].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Себряковский цементный завод и биоиндикация состояния

экосистем

2.1 Себряковский цементный завод и экология

              Климат Волгоградской области засушливый, с резко выраженной континентальностью. Северо-западная часть находится в зоне лесостепи, восточная - в зоне полупустынь, приближаясь к настоящим пустыням. Среднегодовое количество осадков выпадает на северо-западе до 500 мм, на юго-востоке - менее 300 мм.

Волгоградская область расположена в степной и полупустынной зонах. В степях распространены черноземные и каштановые почвы, в полупустыне — светло-каштановые.

Степная зона расположена преимущественно в правобережье и занимает более 80% территории области. Основной фон растительного покрова образуют узлолистные дерновинные злаки (ковыль, типчак, мятлик узколистный) и разнотравье (шалфей, астрагал и др.). Облик степи в течение лета меняется. На смену ранним видам растений зацветают более поздние, и степь приобретает другие тона и окраски.

На фоне степных простоев живописно выглядят лесные массивы по долинам рек, по балкам и оврагам. Состоят они из дуба, клена, тополя, вяза и различных кустарников. По песчаным берегам местами встречаются сосновые-боры, а в поймах рек распротранены ветла и богатая луговая растительность, используемая под сенокосы.

Особенно большие массивы леса - в долинах Волги, Дона, Хопра, Медведицы. 

Растительный покров наряду с другими факторами определяет тип почв. На черноземных почвах степь более красочная, ее называют разнотравно-типчаково-ковыльной. Весной она покрывается изумрудным ковром, по которому разбросаны яркие цветы желтых и красных тюльпанов, низкорослых ирисов. К концу весны эти растения исчезают, а в начале лета на смену им приходят сильно пахнущие шалфей, разноцветные астрагалы. От цветущего шалфея степь становится темно-лиловой. К этому же времени зацветают и многочисленные степные злаки с узкими листьями и хорошо развитыми дернинами (типчак, мятлик узколистный, келерия тонкая). Выбрасывают шелковистые пушистые перья ковыли, отчего степь кажется серебристой и волнуется, словно море.

К концу лета цветущих растений становится меньше. Под жгучими лучами солнца растения выгорают, от отцветших и засыхающих злаков степь начинает буреть, а осенью приобретает соломенно-желтый цвет.

Волгоградская область обладает высоким потенциалом природных ресурсов для развития минерально-сырьевой базы на основе сосредоточенных в недрах разнообразных полезных ископаемых: углеводородного сырья (нефть, конденсат, газ), химического (калийные, магниевые, натриевые соли, фосфориты) и цементного сырья для металлургической промышленности (формовочные пески), промышленности стройматериалов (карбонатные породы и песчаники для производства щебня и бутового камня, пески и глины различного назначения), железных руд, цветных и редких металлов (титано-циркониевые россыпи) и т.д. Значительны запасы подземных вод, в том числе минеральных.

Общие разведанные запасы мела по области составляют 96791 тыс. т., размещены они в 8 административных районах. Из 12 месторождений разрабатывается 1 - в Михайловском районе.

Информация о работе Биоиндикация экосистем цементного завода