Активные фильтры

Автор: Пользователь скрыл имя, 24 Февраля 2012 в 15:55, реферат

Описание работы

Активный фильтр — один из видов аналоговых электронных фильтров, в котором присутствует один или несколько активных компонентов, к примеру транзистор или операционный усилитель.
Фильтрация — преобразование сигналов с целью изменения соотношения между их различными частотными составляющими. Фильтры обеспечивают выделение полезной информации из смеси информационного сигнала с помехой с требуемыми показателями.

Содержание

Введение 3
1.Элементы активных фильтров 5
2. Фильтры низких частот 5
3. Фильтр верхних частот 8
4. Полосовые фильтры 9
Выводы 12
Список использованной литературы 13

Работа содержит 1 файл

Рижский технический университет.doc

— 699.00 Кб (Скачать)


Рижский технический университет

Кафедра транспортной электроники и телематики

 

 

 

 

 

Реферат по предмету „Аналоговые устройства”

Активные фильтры

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Алексей Тимофеев

RECTO 2

Рига 2011

Содержание.

Введение                                                                      3

1.Элементы активных фильтров                            5

2. Фильтры низких частот                                          5

3. Фильтр верхних частот                                          8

4. Полосовые фильтры                                          9

Выводы                                                                      12

Список использованной литературы                            13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

Активный фильтр — один из видов аналоговых электронных фильтров, в котором присутствует один или несколько активных компонентов, к примеру транзистор или операционный усилитель.

Фильтрация — преобразование сигналов с целью изменения соотношения между их различными частотными составляющими. Фильтры обеспечивают выделение полезной информации из смеси информационного сигнала с помехой с требуемыми показателями. Основная задача выбора типа фильтра и его расчета заключается в получении таких параметров, которые обеспечивают максимальную вероятность обнаружения информационного сигнала на фоне помех. Частотно-избирательная цепь, выполняющая обработку смеси сигнала и шума некоторым наилучшим образом, называется оптимальным фильтром. Критерием оптимальности принято считать обеспечение максимума отношения сигнал-шум. Это требование приводит к выбору такой формы частотного коэффициента передачи фильтра, которая обеспечивает максимум отношения сигнал-шум на его выходе. В задачах линейной фильтрации предполагается, что наблюдаемый реальный процесс представляет собой аддитивную смесь сигналаи помехи.

В большинстве случаев электрический фильтр представляет собой частотно-избирательное устройство. Следовательно, он пропускает сигналы определенных частот и задерживает или ослабляет сигналы других частот.

Наиболее общими типами частотно-избирательных фильтров являются фильтры нижних частот (пропускают низкие частоты и задерживают высокие частоты), фильтры верхних частот (пропускают высокие частоты и задерживают низкие частоты), полосовые фильтры (пропускают полосу частот и задерживают те частоты, которые расположены выше и ниже этой полосы) и режекторные фильтры (задерживают полосу частот и пропускают частоты, расположенные выше и ниже этой полосы).

Рис.1.Общее изображение электрического фильтра.

Более точно характеристику частотно-избирательного фильтра можно описать, рассмотрев его передаточную функцию: H(s)=U2(s)/U1(s),

              Величины U1 и U2 представляют собой соответственно входное и выходное напряжения, как показано на общем изображении фильтра на рис 1.

Для установившейся частоты s=j (), передаточную функцию можно переписать в виде

H(j)=H(j)ej(),

 

где H(j) модуль передаточной функции или амплитудно-частотная характеристика;

()  фазово-частотная характеристика, а частота (рад/с) связана с частотой f (Гц) соотношением  =2f.

Диапазоны или полосы частот, в которых сигналы проходят, называются полосами пропускания и в них значение амплитудно-частотной характеристики H(j) относительно велико, а в идеальном случае постоянно. Диапазоны частот, в которых сигналы подавляются, образуют полосы задерживания и в них значение амплитудно-частотной характеристики относительно мало, а в идеальном случае равно нулю. В качестве примера на рис. 2 штриховой линией показана амплитудно-частотная характеристика идеального фильтра нижних частот с единственной полосой пропускания 0<<c и полосой задерживания >c . Частота c между двумя этими полосами определяется как частота среза. На практике невозможно реализовать эту идеальную характеристику. Следовательно, основная проблема при конструировании фильтра заключается в приближении реализованной в лаборатории реальной характеристики с заданной степенью точности к идеальной. Вариант такой реальной характеристики показан сплошной линией на рис. 2.

Рис. 2. Идеальная и реальная АЧХ фильтра нижних частот

В практическом случае полосы пропускания и задерживания четко не разграничены и должны быть формально определены. Исходя из нашего определения, в качестве полосы пропускания выбирается диапазон частот, где значение амплитудно-частотной характеристики превышает некоторое заранее выбранное число, обозначенное A1 на рис. 2, а полосу задерживания образует диапазон частот, в котором амплитудно-частотная характеристика меньше определенного значения, например, A2 . Интервал частот, в котором амплитудно-частотная характеристика постоянно спадает, переходя от полосы пропускания к полосе задерживания, называется переходной областью. Приведенный на рис. 2 пример имеет полосу пропускания 0<<c, полосу задерживания >1 и переходную область c<<1.

Для частотно-избирательных фильтров наиболее важной является амплитудно-частотная характеристика, поскольку ее значение на некоторой частоте определяет прохождение сигнала этой частоты или его подавление.

1.Элементы активных фильтров.

Активные фильтры построены из сопротивлений, конденсаторов и усилителей (обычно операционных) и предназначены для того, чтобы из всех подаваемых на их вход сигналов пропускать на выход сигналы лишь некоторых заранее заданных частот. Эти обладающие частотной избирательностью схемы используются для усиления или ослабления определенных частот в звуковой аппаратуре, в генераторах электромузыкальных инструментов, в сейсмических приборах, в линиях связи, а также в исследовательской практике для изучения частотного состава самых разнообразных сигналов, таких, например, как биотоки мозга или механические вибрации. Активные фильтры находят применение почти в любой области электроники и потому заслуживают нашего внимания.

Одним из наиболее часто применяемых активных приборов, который в основном и будет использоваться, является интегральная схема (ИС) операционного усилителя или ОУ условное изображение которого приведено на рис.3.

Рис.3. Операционный усилитель.

Операционный усилитель представляет собой многовходовый прибор, но для простоты показаны только три его вывода: инвертирующий входной (1), неинвертирующий входной (2) и выходной (3). В идеальном случае ОУ обладает бесконечным входным и нулевым выходным сопротивлениями и бесконечным коэффициентом усиления. Вследствие этого можно, при исследованиях рассматривать только напряжение между входными выводами, а также считать, что ток во входных выводах равен нулю. Реальные ОУ по своим характеристикам приближаются к идеальным наиболее близко только для ограниченного диапазона частот, который зависит от типа ОУ.

2. Фильтры низких частот.

Фильтр нижних частот представляет собой устройство, которое пропускает сигналы низких частот и задерживает сигналы высоких частот. В общем случае определим полосу пропускания как интервал частот 0<<c, полосу задерживания как частоты >1, переходную область как диапазон частот c<<1 (c — частота среза). Эти частоты обозначены на рис. 5, на котором приведена реальная амплитудно-частотная характеристика фильтра нижних частот, где в данном случае заштрихованные области представляют собой допустимые отклонения характеристики в полосах пропускания и задерживания.

 

Рис. 4. Реальная амплитудно-частотная характеристика фильтра нижних частот.

Коэффициент усиления фильтра нижних частот представляет собой значение его передаточной функции при s=0 или, что эквивалентно, значение его амплитудно-частотной характеристики на частоте =0. Следовательно, коэффициент усиления реального фильтра с амплитудно-частотной характеристикой, показанной на рис. 4, равен A.

На рис. 6 приведена широко распространенная схема фильтра нижних частот второго порядка, реализующая неинвертирующий (положительный) коэффициент усиления. Эта схема иногда называется фильтром на ИНУН, поскольку ОУ и два подсоединенных к нему резистора R3 и R4 образуют источник напряжения, управляемый напряжением (ИНУН).

 

 

Рис. 5. Схема фильтра нижних частот на ИНУН второго порядка.

 

Эта схема реализует функцию фильтра нижних частот второго порядка вида

с параметрами:

Величина μ≥1 представляет собой коэффициент усиления ИНУН, а также и коэффициент усиления фильтра.

Значения сопротивлений определяются следующим образом:

где значения C1 и С2 выбираются, а сопротивления R3 и R4 задаются таким образом, чтобы минимизировать смещение по постоянному току ОУ. (Напомним, что в идеальном случае напряжение смещения между входными выводами должно быть равно нулю).

Как было подчеркнуто ранее, фильтр на ИНУН позволяет добиться неинвертирующего коэффициента усиления при минимальном числе элементов. 0н облагает низким полным выходным сопротивлением, небольшим разбросом значений элементов и возможностью получения относительно высоких значений коэффициента усиления. Кроме того, этот фильтр относительно прост в настройке. Точная установка коэффициента усиления осуществляется, например, с помощью подстройки сопротивлений R3 и R4 потенциометром. Но фильтр на ИНУН должен использоваться для значений добротности Q≤10.

3. Фильтр верхних частот.

Фильтр верхних частот представляет собой устройство, пропускающее сигналы высоких частот и подавляющее сигналы низких частот. На рис. 6 изображены идеальная и реальная амплитудно-частотные характеристики и для практического случая обозначены полоса пропускания >c, полоса задерживания 0≤≤1, переходная область 1<<c и частота среза c (рад/с) или fc=c/2π (Гц).

Рис. 6. Идеальная и реальная амплитудно-частотная характеристика фильтра верхних частот.

 

Рис. 7. Схема фильтра верхних частот на ИНУН.

 

 

 

 

Анализируя эту схему, получаем

Коэффициент усиления схемы — неинвертирующий, а значения сопротивлений определяются следующим образом:

где C1 имеет произвольное значение.

Если K=1, то в качестве сопротивления R3 можно взять разомкнутую, а сопротивления R4 — короткозамкнутую цепь, и в этом случае ОУ работает как повторитель напряжения, а сопротивления R1 и R2 не изменяются.

4. Полосовые фильтры.

Полосовой фильтр представляет собой устройство, которое пропускает сигналы в диапазоне частот с шириной полосы BW, расположенной приблизительно вокруг центральной частоты fo (Гц) или o=2πfo (рад/с).

На рис. 8 изображены идеальная и реальная амплитудно-частотные характеристики. В реальной характеристике частоты L и U представляют собой нижнюю и верхнюю частоты среза и определяют полосу пропускания L≤≤U и ее ширину BW=U- L

 

Рис. 8. Идеальная и реальная амплитудно-частотные характеристики полосового фильтра

 

В полосе пропускания амплитудно-частотная характеристика никогда не превышает некоторого определенного значения, например А1 на рис. 9. Существует также две полосы задерживания 0≤≤1 и ≥2, где значение амплитудно-частотной характеристики никогда не превышает заранее выбранного значения, скажем A2. Диапазоны частот между полосами задерживания и полосой пропускания, а именно 1<<L и U<<2, образуют соответственно нижнюю и верхнюю переходные области, в которых характеристика является монотонной.

Передаточные функции полосовых фильтров можно получить из нормированных функций нижних частот переменной s с помощью преобразования

Отношение Q=o/BW характеризует качество самого фильтра и является мерой его избирательности. Высокому значению Q соответствует относительно узкая, а низкому значению Q — относительно широкая ширина полосы пропускания. Коэффициент усиления фильтра К определяется как значение его амплитудно-частотной характеристики на центральной частоте; таким образом K=│H(jo)│

В каждом случае центральная частота и частота среза связаны следующим соотношением:

, где

 

 

Путем последовательного соединения ФНЧ и ФВЧ получаются полосовые фильтры с широкой полосой пропускания. При этом частота среза фильтра нижних частот должна быть выше частоты среза верхних частот и лишь в частном случае эти частоты могут быть взяты равными.

Пример полосового фильтра:

 


Выводы.

Перечень использования активных фильтров очень велик. Фильтры могут быть использованы для усиления или ослабления определенных частот, в генераторах электромузыкальных инструментов, в сейсмических приборах, в линиях связи, для изучения частотного состава сигналов.


Список использованных источников

Быстров Ю.А., Мироненко И.Г. Электронные цепи и устройства. М.: Высшая школа, 1989.

Гусев В.Г., Гусев Ю.М. Электроника. М.: Высшая школа, 1991.

Справочник по активным фильтрам: Пер. с англ./Д. Джонсон, Дж. Джонсон, Г. Мур. − М.: Энергоатомиздат, 1983.

www.radiokot.ru

www.google.ru

 

 

 

13

 



Информация о работе Активные фильтры