Автор: Пользователь скрыл имя, 25 Декабря 2011 в 11:48, курсовая работа
Стремительное развитие электроники и вычислительной техники оказалось предпосылкой для широкой автоматизации самых разнообразных процессов в промышленности, в научных исследованиях, в быту. Реализация этой предпосылки в значительной мере определялась возможностями устройств для получения информации о регулируемом параметре или процессе, т.е. возможностями датчиков.
ВВЕДЕНИЕ.
ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ДАТЧИКОВ ТЕМПЕРАТУРЫ.
ОСНОВНЫЕ ТИПЫ ПОЛУПРОВОДНИКОВЫХ ДАТЧИКОВ ТЕМПЕРАТУРЫ.
Датчики температуры на основе диодов и транзисторов.
Датчики температуры на основе терморезисторов.
Пленочные полупроводниковые датчики температуры.
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
Расширить измеряемый температурный диапазон можно, если включить параллельно кремниевому терморезистору пассивный резистор (независящий от температуры) при питании схемы постоянным током или последовательно – при питании схемы от источника постоянного напряжения. НПО Измерительной техники г.Королев разработан кремниевый датчик ТЭ-260 [2], работающий при температурах от 223 до 523 К.
Положительным
значением температурного коэффициента
удельного сопротивления в
Рис.3. Схема устройства кремниевого термодатчика с отрицательным ТКС.
1 – кремниевый чувствительный элемент;
2 – пластина из сапфира;
3, 4 – металлизированные
5 – микропроводник;
6 – смола;
7 – выводы.
Рис.
4. Температурные зависимости
p-типов проводимости.
Концентрация носителей тока, м-3:
1 – 1020; 2 – 1021; 3 – 1022;
4 – 1023.
температурный коэффициент удельного сопротивления имеет положительное значение.
На базе кремниевых чувствительных элементов с положительным ТКС рядом зарубежных фирм (Volvo, Siemens (Германия), Philips (Нидерланды), ITT Components Group (Великобритания), Rodan Industries Inc, Texas Instruments (США) и др. разработано и выпускается серийно большое количество термодатчиков различного назначения. Чувствительные элементы этих приборов однотипны и представляют собой кристаллы кремния n-типа проводимости, изготовленные в виде брусков или кубиков. Размеры чувствительных элементов могут несколько варьироваться для получения требуемого сопротивления.
Конечные стадии технологического процесса изготовления термодатчиков отличаются у различных фирм и зависят от предпочтительной конфигурации прибора. Общими операциями являются припаивание выводов к контактным поверхностям и герметизация чувствительных элементов смолой или стеклом. В некоторых конструкциях кремниевых датчиков брусок или пластину снабжают механическими контактами, положение которых фиксируют частично расплавленной стеклянной трубкой или заливкой смолой. Луженые медные выводы присоединяют к торцевым металлическим контактам. На рис.5 показаны различные конструкции таких термодатчиков. Рабочий диапазон датчиков с чувствительными элементами на основе кремния n-типа чаще всего составляет интервал от 223 до 423 К. При помещении кремниевых чувствительных элементов в герметичный стеклянный корпус некоторым фирмам (Volvo, Philips) удается увеличить верхний диапазон рабочих температур до 570 К [16,17].
Таким
образом, на основе чувствительных элементов,
изготовленных из монокристаллического
кремния, разработаны и выпускаются
серийно термодатчики с широким
набором номинальных
элементами.
1 – вывод; 2 – смола; 3 – кремниевый чувствительный элемент;
4 – никелевое покрытие; 5 – припой; 6 – стекло;
7 – молибденовый охладитель; 8 – керамика;
9 – золоченый контакт.
Уменьшение разброса значений Rн до (1…2)% достигается лишь разбраковкой чувствительных элементов;
Кроме
того, процесс сборки термодатчиков
такого типа трудно поддается автоматизации
и, как правило, осуществляется с
использованием большой доли ручного
труда.
Улучшение
характеристик
Основным недостатком датчиков на основе автоэпитаксиальных структур «кремний на кремнии», а также на основе чувствительных элементов с диффузионными кремниевыми тензорезисторами является низкий верхний предел рабочих температур, что обусловлено резким ухудшением изолирующих свойств p-n перехода при температурах более (410…430) К [18].
Большие
возможности по дальнейшему совершенствованию
пленочных термодатчиков
В настоящее время на основе чувствительных элементов из КНС-структур разработан ряд термодатчиков. Так датчик температуры ТЭЭ-295, разработанный в НПО измерительной техники г.Королев, работает в диапазоне температур от 73 до 473 К и имеет основную погрешность 0,25% [2].
В Государственном научном центре «НИИТЕПЛОПРИБОР» были разработаны аналогичные датчики с термочувствительными элементами ТЭ-1 и ТЭ-2, работающие в диапазоне температур от 73 до 723 К и имеющие погрешность 0,25% и выходной сигнал (4…20) мА [20]. В этих датчиках линеаризация выходного сигнала осуществлялась с помощью одного или двух термонезависимых резисторов, в зависимости от способа питания – от генератора тока или генератора напряжения (рис.6).
Для
получения унифицированного выходного
сигнала использован
Рис.6. Структурная электрическая схема датчика температуры с двумя (а) и
одним (б) терморезисторами.
В диапазоне измерения температур от t1 до t2 термочувствительный мост балансируется внешним потенциометром (на рис. не показан) таким образом, чтобы нижнему значению t1 измеряемой температуры соответствовало начальное значение 4 мА выходного сигнала датчика. Настройкой коэффициента усиления дифференциального усилителя датчика обеспечивается соответствие величины 20 мА выходного сигнала значению t2 верхнего предела измерений температуры.
На
рис. 6б показана электрическая схема
датчика температуры, реализованная
на базе чувствительного элемента ТЭ-1
с одним терморезистором. В этом
случае терморезистор R(t) вместе с линеаризующим
шунтом Rp включены в цепь питания
от стабилизированного источника постоянного
тока 0,8 мА. Термонезависимый резистор
R включен в цепь питания от другого стабилизированного
источника постоянного тока 0,8 мА. Разность
падения напряжения DU на этих резисторах,
пропорциональная величине измеряемой
температуры, поступает на вход дифференциального
усилителя датчика и затем преобразуется
в стандартный выходной сигнал постоянного
тока (4…20) мА.
5. ЗАКЛЮЧЕНИЕ
Анализ
литературных источников позволяет
сделать вывод о все более
широком использовании в системах регулирования
полупроводниковых датчиков температуры,
разнообразие которых позволяет решить
множество сложных задач. Появившиеся
в последнее время датчики на изолирующих
подложках типа КНС-структур позволяют
во многих специфических случаях заменить
традиционные металлические (например
платиновые) датчики и тем самым удешевить
измерения и повысить надежность систем.
6. СПИСОК ЛИТЕРАТУРЫ