Программируемое автономное 32-канальное СДУ

Автор: Катя Федорова, 06 Декабря 2010 в 22:14, реферат

Описание работы

Светодинамические устройства (СДУ) находят широкое применение для эстетического оформления баров, дискотек, казино, праздничной иллюминации, в автомобильной электронике (для управления стоп-сигнальными "огнями"), а также для организации световой рекламы. СДУ с программируемыми алгоритмами позволяют реализовывать большое многообразие светодинамических эффектов и управлять по программе большим числом световых элементов. Такое устройство можно выполнить, к примеру, на одном микроконтроллере и нескольких регистрах, в качестве интерфейсных схем, для управления набором световых элементов.

Работа содержит 1 файл

автономное 32-канальное светодинамическое устройство с последовательным интерфейсом.doc

— 103.50 Кб (Скачать)

КОНСТРУКЦИЯ И  ДЕТАЛИ 

Основной контроллер собран на печатной плате размерами 100 x 150 мм (рис. 3), а выходные регистры — 25 x 80 мм (рис. 4) из фольгированного стеклотекстолита толщиной 1,5 мм с двухсторонней металлизацией. Рисунки печатных плат разрабатывались для нанесения "от руки", что должно упростить их изготовление в условиях радиолюбительской лаборатории. Соединения, показанные штриховой линией, выполняются тонким многожильным проводом в изоляции. 

В устройстве использованы постоянные резисторы типа МЛТ-0,125, переменные — СП3-38б, конденсаторы К10-17 (C1-C6, С8), К50-35 (С7, C9-C16); светодиоды — сверхъяркие, четырех цветов, на основной плате контроллера — диаметром 3 мм, а в выносной гирлянде — 10 мм типа КИПМ-15, размещенные в чередующейся последовательности. Возможны, конечно, и другие варианты сочетания светоизлучающих элементов. Для управления более мощной нагрузкой, например, лампами накаливания или гирляндами параллельно включенных светодиодов выходные регистры необходимо дополнить транзисторными или симисторными ключами. Защитный диод VD1 и развязывающие (VD2, VD3) могут быть любыми кремниевыми средней мощности. Кнопки SB1-SB3, типа КМ1-1, и переключатель, типа МТ-1, распаиваются непосредственно на плате контроллера. Для них предусмотрены отверстия соответствующей конфигурации. 

Микросхемы выходного  регистра (DD22-DD29, см. рис. 5), управляющие  выносной гирляндой световых элементов, как отмечалось выше, подключаются к основной плате контроллера витыми парами проводов. Их включение (с учетом дополнительных инвертирующих триггеров Шмитта) аналогично ИМС DD18-DD21 контрольного регистра (см. рис. 1), но данные с выхода переноса "PR" последней ИМС DD29 выходного регистра не используются, поскольку выходной регистр работает только в режиме приема (загрузки, но не считывания) информации. Питание выносной гирлянды световых элементов, как и основного контроллера, осуществляется от отдельного стабилизированного источника напряжением 12 В. Ток, потребляемый устройством, не превышает 600 мА (это пиковое значение при одновременном свечении всех светодиодов), а при использовании ИМС КР1533ИР24 — не превышает 750 мА. Поэтому источник питания должен обладать соответствующей нагрузочной способностью. Рекомендуется использовать источник питания с минимальным током нагрузки не менее 1А, особенно для питания выходных (удаленных) регистров. Это позволит уменьшить амплитуду сигнала помехи, наводимой по цепи питания на сигнальные цепи микросхем регистров. 

Как упоминалось  ранее, данные в выходной регистр (DD23, DD25, DD27, DD29) передаются по сигнальным линиям последовательного интерфейса: "Данные" и "Синхронизация". Следует обратить внимание, что в качестве буферных трансляторов на основной плате контроллера используются именно элементы микросхемы КР1554 ТЛ2 (74AC14), а не КР1564 ТЛ2 (74HC14), поскольку только первая из них способна обеспечить большой выходной ток (до 24 мА) и непосредственно управлять емкостной нагрузкой. При небольшой длине линии (до 10 м) частота синхронизирующих импульсов задается максимальной (100 кГц) и движок подстроечного резистора R13 устанавливается в положение, соответствующее минимальному сопротивлению. При значительном увеличении длины линии (более 10 м) возрастает амплитуда сигнала помехи, индуцируемой в сигнальных линиях смежными проводниками. Если амплитуда помехи превысит пороговое значение напряжение переключения входных триггеров Шмитта (с учетом гистерезиса), может произойти сбой передачи данных. Для исключения такой ситуации, при работе контроллера на линии относительно большой длины (от 10 до 100 м), возможно, потребуется несколько уменьшить частоту ВЧ-генератора резистором R13. Скорость загрузки светодинамических комбинаций при этом снизится, но визуального отличия в работе устройства не будет, поскольку эффект мерцания светодиодов полностью маскируется сигналом "Разрешение индикации". Даже при минимально возможной частоте ВЧ-генератора (20 кГц), максимальное время обновления светодинамической комбинации составит 400 мкс x 32 импульса=12800 мкс (12,8 мс), что соответствует частоте регенерации около 78 Гц. Такая частота близка к эргономичному значению 85 Гц. 

Регистры DD16, DD18-DD21 типа КР1564ИР24 (прямой аналог 74HС299), используемые на основной плате контроллера, можно заменить КР1554ИР24 (74AC299), а, в крайнем случае, и КР1533ИР24. Поскольку микросхемы КР1533ИР24 (SN74ALS299) ТТЛШ-структуры и потребляют достаточно большой ток даже в статическом режиме (около 35 мА), в удаленных (выходных) регистрах рекомендуется использовать микросхемы КМОП-структуры типа КР1564ИР24 (74HC299). На основной же плате контроллера возможно использование регистров любой из серий КР1554, КР1564 или КР1533. При отсутствии ЭСППЗУ AT28C16-15PI можно использовать ОЗУ статического типа КР537РУ10 (РУ25). При этом если есть необходимость в длительном хранении управляющей программы, нужно использовать источник резервного питания напряжением 3В, состоящий из двух элементов типа LR03 (AAA), который включается через развязывающий германиевый диод типа Д9Б, как показано в [1]. 

Интегральный  стабилизатор DA1 (КР142ЕН5Б), при указанных  на схеме номиналах токоограничительных  резисторов R17-R59, в радиаторе не нуждается, но если суперярких светодиодов в распоряжении не окажется, можно использовать и обычные, стандартной яркости. При этом номиналы резисторов R17-R59 нужно уменьшить в три-четыре раза, а стабилизатор установить на радиатор площадью не менее 100 см2. Напряжение питания, как основной платы контроллера, так и выходных регистров может быть выбрано в диапазоне 9-15В, но при его увеличении следует помнить, что мощность, рассеиваемая на ИМС стабилизаторов, возрастает пропорционально падающему на них напряжению. Частоту переключения светодинамических комбинаций можно изменять подстройкой резистора R9, а скорость загрузки, при работе на очень длинные линии, — R13. 

Методика прграммирования 

Подготовка устройства к работе заключается в занесении  светодинамических комбинаций в  память ЭСППЗУ с помощью кнопок SB1-SB3. Возможен и альтернативный вариант: записать управляющую программу, сформированную, например, по методике, рассмотренной в [4], с помощью стандартного программатора, а затем установить ИМС ЭСППЗУ в панельку, предварительно распаянную на плате устройства. 

В качестве примера  рассмотрим программирование эффекта "бегущего огня". Будем считать, что до начала программирования питание  было отключено. 

Пример 1. Эффект "Бегущий огонь". 

Включить питание. Светодиоды HL3-HL11 светиться не должны (счетчики DD8.1, DD8.2, DD9.1 — в нулевом состоянии). Режим программирования индицирует красный светодиод HL2. 

Однократно нажать кнопку SB1. Контролировать включение  светодиода HL12. 

Однократно нажать кнопку SB3. (При этом произойдет запись текущей комбинации с одновременным обновлением содержимого контрольных регистров DD18-DD21). 

Однократно нажать кнопку SB2. Контролировать погасание  светодиода HL12 и включение HL13. 

Однократно нажать кнопку SB3. 

Однократно нажать кнопку SB2. Контролировать погасание  светодиода HL13 и включение HL14. 

Однократно нажать кнопку SB3. 

Повторить до прохождения  включенным светодиодом всех позиций. 

В процессе программирования нажатие кнопки SB3 сопровождается изменением комбинаций двоичного кода на выходах  счетчиков DD8.1, DD8.2, DD9.1, которые отображает линейка светодиодов HL3-HL11. 

Еще один пример программирования эффекта "бегущей  тени" рассмотрен в [1]. 

Как упоминалось  ранее, в устройстве заложена потенциальная  возможность наращивания числа  световых элементов. Благодаря этому, устройство может использоваться, например, в качестве контроллера светоинформационного табло. Количество элементов гирлянды может достигать нескольких десятков (их удобно увеличивать кратно восьми) без существенного изменения протокола последовательного интерфейса. Необходимо лишь установить требуемое количество контрольных и выходных регистров и соответственно изменить число тактовых импульсов синхронизации. Естественно, нужно учитывать изменение диапазона адресов ЭСППЗУ, соответствующего одной светодинамической комбинации. Если нужно управлять гирляндой, число элементов которой превышает сотню, необходимо использовать дополнительные буферные регистры. При этом передача данных в буферные регистры будет производиться с более низкой тактовой частотой, а в выходные регистры, подключенные к их выходам, данные будут переписываться после завершения цикла передачи данных в буферные. Это позволит передавать большие пакеты данных по линиям последовательного интерфейса непосредственно в момент отображения текущей светодинамической комбинации. Естественно, при этом потребуется некоторое усложнение протокола.

Информация о работе Программируемое автономное 32-канальное СДУ