Технология СТР

Автор: Пользователь скрыл имя, 01 Марта 2013 в 12:41, реферат

Описание работы

Технология Computer-to-Plate, известная несколько десятилетий, стала широко внедряться только последние 5 лет. Это обусловлено тем, что появились достаточно тиражестойкие формные материалы, пригодные для поэлементной записи изображений, эффективное оборудование, осуществляющее прямое экспонирование формного материала с высоким разрешением и скоростью, надежные программные средства допечатной подготовки изданий.

Содержание

1 .Введение
2.Технология СТР
2.1 формные устройства для лазерной записи офсетных печатных форм….
2.2 формовыводные устройства для записи пластин, расположенных на внутренней поверхности барабана
2.3 планшетные формовыводные устройства
3. Технические характеристики устройств СТР
4. Заключение
5. Список литературы

Работа содержит 1 файл

Soderzhanie23.docx

— 133.30 Кб (Скачать)

Содержание

 

1.Введение  
2.Технология СТР

    2.1 формные устройства  для лазерной  записи офсетных печатных форм….

    2.2 формовыводные  устройства  для записи пластин, расположенных на          внутренней поверхности барабана

    2.3 планшетные формовыводные устройства

3. Технические характеристики устройств  СТР

4. Заключение

5. Список литературы

ВВЕДЕНИЕ

Технология  Computer-to-Plate, известная несколько десятилетий, стала широко внедряться только последние 5 лет. Это обусловлено тем, что появились достаточно тиражестойкие формные материалы, пригодные для поэлементной записи изображений, эффективное оборудование, осуществляющее прямое экспонирование формного материала с высоким разрешением и скоростью, надежные программные средства допечатной подготовки изданий. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Технология CTP

          CTP (англ. Computer to Plate) - технология изготовления печатных форм в полиграфии. Печатные элементы на формных пластинах образуются с помощью засветки пластинлазерным лучом и последующей химической обработки. По своей сути технология CTP представляет собой управляемый компьютером процесс изготовления печатной формы методом прямой записи изображения на формный материал. Этот процесс, который реализуется с помощью однолучевого или многолучевого сканирования, более точный, так как каждая пластина является первой оригинальной копией, изготовленной с одних и тех же цифровых данных. В результате достигаются большая резкость точек, более точная приводка, более точное воспроизведение всего диапазона тональности исходного изображения, меньшее растискивание растровой точки одновременно со значительным ускорением подготовительных и приладочных работ на печатной машине. У CTP-технологии очевидные преимущества по сравнению с традиционной технологией фотонабора и формного процесса, которые можно сформулировать следующим образом:

          –сокращается время технологического цикла изготовления печатных форм (не нужны операции обработки фотоматериала, копирования фотоформ на формные пластины и в ряде случаев обработки экспонированных формных пластин);

–исключаются из производства фотонаборные автоматы, проявочные машины, копировальное оборудование, а это означает экономию производственных площадей, затрат на приобретение и эксплуатацию техники, электроэнергии; сокращение численности обслуживающего персонала;

–повышается качество изображения на печатных формах благодаря снижению уровня случайных и систематических помех, возникающих при экспонировании и обработке традиционных фотоматериалов (вуаль, ореольность) и копировании монтажей на формные пластины;

–улучшаются экологические условия на полиграфическом предприятии из-за отсутствия химической обработки пленок; повышается культура производства и совершенствуется организация технологического процесса.

Однако  быстрое освоение технологии Compuer-to-Plate в настоящее время для многих полиграфических предприятий затруднено целым рядом проблем.

Проблемы  с корректурными оттисками

Получение корректурного оттиска спуска полос  большого формата крайне затруднительно, так как нет принтеров, которые  могут вывести оттиск даже формата  А2. Приходится делать вывод на принтере формата А3 с большим уменьшением, что не всегда приемлемо, поскольку при уменьшении в 4-5 раз обычный текст перестает читаться. Конечно, для проверки можно распечатывать каждую страницу издания отдельно, но использование другого растрового процессора (архитектура растровых процессоров, используемых в принтерах, ФНА и CTP, как правило, различается) может быть причиной появления ошибок, которые обнаружатся уже на форме. Кроме того, постраничная распечатка не дает возможности контролировать правильность выполнения таких операций, как установка спуска полос, обрезных, фальцовочных, корешковых и других меток, шкал контроля печати и т.д. Если при выводе фотоформ большого формата возможен визуальный контроль с помощью просмотровых столов, то читать печатную форму неудобно, поскольку изображение на ней слабоконтрастное и рассмотреть что-либо невозможно. Проконтролировать полученную форму можно либо на пробопечатном станке, либо уже по оттиску на самой печатной машине, что экономически довольно рискованно. Любая неточность, замеченная уже на оттиске, приводит к повторению всех технологических операций и, как следствие, к повышению себестоимости допечатной подготовки (повторное экспонирование фотоформ обходится все-таки дешевле).

Повышенные требования к квалификации оператора

В технологии CTP допечатная подготовка должна проводиться  намного тщательнее, чем при традиционном подходе. Печатная форма должна содержать  в себе все необходимые элементы изображения и именно в том  порядке, в каком они должны быть на бумаге. Необходимо выполнить полный спуск полос, установить все метки  обрезки и фальцовки, разместить шкалы контроля печатного процесса и т.д. Эта работа требует повышенной внимательности и квалификации оператора.

Основные типы устройств  СТР

В настоящее  время по технологии CTP изготовляют  формы офсетной, высокой, флексографской и глубокой печати. Для записи изображения на формный материал при изготовлении офсетных и фотополимерных форм высокой и флексографской печати применяются устройства двух принципиально разных типов. К первому типу устройств, получивших широкое распространение, относятся лазерные экспонирующие установки (формовыводные устройства), в которых элементы изображения создаются на светочувствительных или термочувствительных формных материалах по

действием светового или теплового лазерного  излучения. В устройствах второго  типа источником экспонирующего излучения  служит мощная УФ-лампа. При этом экспонирование осуществляется через специальный чип DMD, содержащий множество управляемых микрозеркал, или светопереключаемую линейку LSA, элементы которой могут пропускать свет под действием управляющих сигналов. В современных системах CTP, ориентированных на изготовление офсетных и фотополимерных форм высокой и флексографской печати, применяют лазерные формовыводные устройства трех основных принципов:

–барабанные, выполненные по технологии "внутренний барабан", когда форма расположена на внутренней поверхности неподвижного цилиндра;

–барабанные, выполненные по технологии "внешний барабан", когда форма расположена на наружной поверхности вращающегося цилиндра;

–планшетные, когда форма расположена в горизонтальной плоскости неподвижно или совершает движение в направлении, перпендикулярном направлению записи изображения. Достоинствами устройств первого принципа построения являются достаточность одного источника излучения, благодаря чему достигается высокая точность записи; простота фокусировки и отсутствие необходимости юстировки лазерных лучей; большая оптическая глубина резкости; простота установки перфорирующего устройства для штифтовой приводки форм; простота замены источников излучения (исчезающая при использовании твердотельных лазеров).

Внешнебарабанные устройства имеют такие достоинства, как невысокая частота вращения барабана благодаря наличию многочисленных лазерных диодов; долговечность лазерных диодов; невысокая стоимость запасных источников излучения; возможность экспонирования больших форматов. К их недостаткам относят необходимость значительного числа лазерных диодов и, как следствие, такого же числа информационных каналов; необходимость трудоемкой юстировки; невысокую глубину резкости; сложность установки устройств для перфорирования форм.

И в том, и в другом случаях экспонирование термочувствительных формных пластин  выполняется в инфракрасной области  спектра. При этом заметны преимущества внешнебарабанного принципа, позволяющего максимально приблизить источник энергии к поверхности печатной формы. У устройств с записью на внутреннюю поверхность барабана расстояние от пластины до развертывающего элемента, как правило, соответствует радиусу барабана и становится тем больше, чем больше формат пластины. Для того чтобы генерировать исключительно маленькую и резкую точку на таком расстоянии, требуется дорогостоящая оптика.

При записи печатных форм скоростные характеристики формовыводных устройств существенно зависят от чувствительности формного материала. Внешние барабаны вращаются сравнительно медленно. Например, при записи термочувствительных материалов частота вращения барабана составляет 150 об. /мин. Более короткое время экспонирования печатной формы достигается увеличением числа лазерных диодов. При этом вероятность сбоев при работе возрастает с увеличением числа диодов.Таким образом, если рассматривать тенденцию дальнейшего развития систем CTP, то можно заметить, что для печатных форм форматом до 70х100 см существуют одинаковые условия для обоих принципов записи изображений. Для больших форматов печатных форм определенные преимущества имеет техника с внешним барабаном. Планшетный способ широко применяется в области форматов до 50х70 см для газетного производства. Причем в последнем случае его преимущества объясняются именно небольшими форматами и достаточностью относительно низких разрешений.В настоящее время для экспонирования печатных форм применяются следующие типы лазерных источников света:

1) аргон-ионный голубой лазер с длиной волны 488 нм;

2) гелий-неоновый  красный лазер с длиной волны  633 нм;

3) маломощный  красный лазерный диод с длиной  волны 670 нм;

4) инфракрасный  мощный лазерный диод с длиной  волны 830 нм, который получил распространение для экспонирования термочувствительных пластин, требующих более высоких энергетических затрат, и применяется в устройствах с внешним барабаном;

5) инфракрасный  мощный лазер ND YAG на иттрий-алюминиевом гранате с неодимом с длиной волны 1064 нм, используемый во многих системах CTP благодаря следующим достоинствам:

–небольшая длина волны позволяет получить пятно диаметром менее 10 мкм и значительно повысить разрешение системы при записи;

–минимальные потери при прохождении по световолоконным световодам и легкость модулирования упрощают конструкцию лазерных установок;

–значительное число известных материалов (в особенности металлы) имеют более высокий коэффициент поглощения в области длин волн 1,06 мкм, что облегчает разработку формных пластин и повышает эффективность лазерной записи;

 

6) зеленый  лазер на иттрий-алюминиевом гранате с двойной частотой ND YAG с длиной волны 532 нм;

7) фиолетовый  лазерный диод с длиной волны  400-410 нм, который позволяет использовать обычные светочувствительные пластины, применяемые для контактного копирования.

В зависимости  от типа источника лазерного излучения  различные фирмы предлагают специальные  формные пластины, которые можно  разделить на фотополимерные, серебросодержащие, с гибридными слоями, с термочувствительными слоями.

          2.1 Формовыводные устройства для лазерной записи офсетных печатных форм

Основой лазерных формовыводных устройств является оптико-механическая система, содержащая в зависимости от конструкции один или несколько лазеров, модулятор, телескоп, фокусирующую линзу, поворотные зеркала, вращающийся зеркальный дефлектор, механизм крепления и перемещения формной пластины, механизм перемещения оптической или термической головки. 

       2.2 Формовыводные устройства для записи пластин, расположенных на внутренней поверхности барабана

Такие устройства состоят из трех последовательно  соединяемых секций: ввода, экспонирования и вывода. Секция ввода предназначена  для размещения кассеты или нескольких кассет с формными пластинами, автоматического  или ручного ввода пластин  в секцию экспонирования. Секция экспонирования служит для записи изображения и  пробивки штифтовых отверстий в  формной пластине. Секция вывода передает экспонированную пластину непосредственно  в процессор для обработки  форм или выводит пластину на приемное устройство. Все три секции объединены системой транспортирования пластин, конструкция которой в разных моделях формовыводных устройств имеет свои особенности. Так, система транспортирования, представленная на рис.7а, передает пластины из кассеты с вертикальным их размещением в секцию экспонирования также в вертикальном положении. В секции экспонирования пластина с помощью вакуума располагается на внутренней поверхности барабана. После пробивки штифтовых отверстий и экспонирования пластина вновь принимает вертикальное положение и передается в секцию вывода. В секции вывода пластина из вертикального положения переводится в горизонтальное и выходит на приемное устройство или в подсоединенный к нему процессор.

В транспортирующей системе (рис.7б) пластина, находящаяся  в кассете или вставляемая  оператором в секцию ввода, расположена  в горизонтальной плоскости. В таком  положении она передается в секцию экспонирования. При этом прокладочная бумага отделяется от формной пластины. В секции экспонирования пластина засасывается вакуумом и плотно прилегает к  внутренней поверхности барабана. Экспонированная  пластина с пробитыми штифтовыми отверстиями в горизонтальном положении  поступает в секцию вывода. Схема системы транспортирования (рис.7в) автоматически удаляет прокладочную бумагу и выбирает пластины из двух подающих кассет. Загружаются и выгружаются пластины частично параллельно по времени: пока экспонированная пластина извлекается из барабана, следующая пластина подается из кассеты к точке входа в барабан; загрузка чистой пластины в барабан происходит одновременно с транспортированием экспонированной пластины в проявочный процессор. В результате время загрузки/выгрузки сокращается практически в 2 раза. Секции экспонирования некоторых формовыводных устройств в зависимости от того, какой тип пластин предполагается использовать, могут быть оснащены разными лазерами. Оптическая система (рис.8) устройства, которое может иметь ND YAG-лазер мощностью 10 мВт с длиной волны 532 нм или мощностью до 100 мВт с длиной волны 1064 нм, обеспечивает высокоточную запись изображения с разрешением от 1270 до 3386 dpi. В этой системе луч лазера проходит через затвор 2, плоскопараллельную пластину 3 и модулируется акустооптическим модулятором 4. В зависимости от требуемого разрешения поворотом турели 5 на оптическую ось устанавливается одна из линз, которая соответственно разрешению формирует апертуру лазерного луча.

Информация о работе Технология СТР