Аэробное и анаэробное дыхание

Автор: Пользователь скрыл имя, 02 Мая 2012 в 21:48, курсовая работа

Описание работы

Цель работы: изучить процесс аэробного и анаэробного дыхания
Дыхание присуще всем живым организмам. Оно представляет собой окислительный распад органических веществ, синтезированных в процессе фотосинтеза, протекающих с потреблением кислорода и выделением диоксида углерода. А.С. Фаминцын рассматривал фотосинтез и дыхание как две последовательные фазы питания растений: фотосинтез готовит углеводы, дыхание перерабатывает их в структурную биомассу растения, образуя в процессе ступенчатого окисления реакционноспособные вещества и освобождая энергию, необходимую для их превращения и процессов жизнедеятельности в целом. Суммарное уравнение дыхания имеет вид:
C H O + 6O → 6CO + 6H O + 2875кДж.

Содержание

Введение
А.Растения:
1. Аэробное дыхание
1.1 Окислительное фосфолирование
2. Анаэробное дыхание
2.1 Типы анаэробного дыхания
Б.Мышцы:
3.Анаэробные пути ресинтеза АТФ
4.Креатинфосфатный путь ресинтеза АТФ (офеатинкиназный, алактатный)
4.Гликолитический путь ресинтеза АТФ
5.Аденилаткиназная реакция
6.Соотношение между различными путями ресинтеза АТФ при мышечной работе
7.Вывод
8.Список литературы

Работа содержит 1 файл

Копия курсовая.docx

— 338.05 Кб (Скачать)

В упрощенном виде ресинтез АТФ аэробным путем может быть представлен схемой.

Чаще всего водород отнимается от промежуточных продуктов цикла  трикарбоновых кислот - цикла Кребса. Цикл Кребса - это завершающий этап катаболизма, в ходе которого происходит окисление ацетилкофермента А до С02 и Н20. В ходе этого процесса от перечисленных выше кислот отнимается 4 пары атомов водорода и поэтому образуется 12 молекул АТФ при окислении одной молекулы ацетилкофермента А.

В свою очередь, ацетил-КоА может образовываться из углеводов, жиров и аминокислот, т.е. через ацетил-КоА в цикл Кребса вовлекаются углеводы, жиры и аминокислоты:

Скорость аэробного пути ресинтеза АТФ контролируется содержанием в мышечных клетках АДФ, который является активатором ферментов тканевого дыхания. В состоянии покоя, когда в клетках почти нет АДФ, тканевое дыхание протекает с очень низкой скоростью. При мышечной работе за счет интенсивного использования АТФ происходит образование и накопление АДФ. Появившийся избыток АДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.

Другим активатором аэробного  пути ресинтеза АТФ является С02. Возникающий при физической работе в избытке углекислый газ активирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышц кислородом.

Максимальная мощность составляет 350-450 кал/мин-кг. По сравнению с анаэробными  путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности. Это обусловлено тем, что возможности аэробного процесса ограничены доставкой кислорода в митохондрии и их количеством в мышечных клетках. Поэтому за счет аэробного пути ресинтеза АТФ возможно выполнение физических нагрузок только умеренной мощности.

Время развертывания - 3-4 мин. Такое  большое время развертывания  объясняется тем, что для обеспечения  максимальной скорости тканевого дыхания  необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц.

Время работы с максимальной мощностью  составляет десятки минут. Как уже  указывалось, источниками энергии  для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Кребса. Причем для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры, кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза АТФ функционирует с максимальной мощностью в течение такого продолжительного времени.

По сравнению с другими идущими  в мышечных клетках процессами ресинтеза АТФ аэробный ресинтез имеет ряд преимуществ. Он отличается высокой экономичностью: в ходе этого процесса идет глубокий распад окисляемых веществ до конечных продуктов - С02 и Н20 и поэтому выделяется большое количество энергии. Так, например, при аэробном окислении мышечного гликогена образуется 39 молекул АТФ в расчете на каждую отщепляемую от гликогена молекулу глюкозы, в то время как при анаэробном распаде этого углевода синтезируется только 3 молекулы АТФ в расчете на одну молекулу глюкозы. Другим достоинством этого пути ресинтеза является универсальность в использовании субстратов. В ходе аэробного ресинтеза АТФ окисляются все основные органические вещества организма: аминокислоты, углеводы, жирные кислоты, кетоновые тела и др. Еще одним преимуществом этого способа образования АТФ является очень большая продолжительность его работы: практически он функционирует постоянно в течение всей жизни. В покое скорость аэробного ресинтеза АТФ низкая, при физических нагрузках его мощность может стать максимальной.

Однако аэробный способ образования  АТФ имеет и ряд недостатков. Так, действие этого способа связано с обязательным потреблением кислорода, доставка которого в мышцы обеспечивается дыхательной и сердечнососудистой системами. Функциональное состояние кардиореспираторной системы является лимитирующим фактором, ограничивающим продолжительность работы аэробного пути ресинтеза АТф с максимальной мощностью и величину самой максимальной мощности.

Возможности аэробного пути ограничены еще и тем, что все ферменты тканевого дыхания встроены во внутреннюю мембрану митохондрий в форме  дыхательных ансамблей и функционируют  только ffPH наличии неповрежденной мембраны. Любые факторы, влияющие На состояние и свойства мембран, нарушают образование АТФ аэробным способом. Например, нарушения окислительного фосфорилирования наблюдаются при ацидозе, набухании митохондрий, при развитии в мышечных клетках процессов свободно-радикального окисления липидов, входящих в состав мембран митохондрий.

Еще одним недостатком аэробного  образования АТФ можно считать  большое время развертывания  и небольшую по абсолютной величине максимальную мощность. Поэтому мышечная деятельность, свойственная большинству  видов спорта, не может быть полностью  обеспечена этим путем ресинтеза АТФ и мышцы вынуждены дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную мощность.

В спортивной практике для оценки аэробного фосфорилирования часто используют три показателя: максимальное потребление кислорода, порог анаэробного обмена и кислородный приход.

МПК - это максимально возможная  скорость потребления кислорода  организмом при выполнении физической работы. Этот показатель характеризует  максимальную мощность аэробного пути ресинтеза АТФ: чем выше величина МПК, тем больше значение максимальной скорости тканевого дыхания, это обусловлено тем, что практически весь поступающий в организм кислород используется в этом процессе. МПК представляет собой интегральный показатель, зависящий от многих факторов: от функционального состояния кардиореспираторной системы, от содержания в крови гемоглобина, а в мышцах - миоглобина, от количества и размера митохондрий. У нетренированных молодых людей МПК обычно равно 3-4 л/мин, у спортсменов высокого класса, выполняющих аэробные нагрузки, МПК - 6-7 л/мин. На практике, для исключения влияния на эту величину массы тела МПК рассчитывают на кг массы тела. В этом случае у молодых людей, не занимающихся спортом, МПК равно 40-50 мл/мин-кг, а у хорошо тренированных спортсменов - 80-90 мл/мин-кг.

В спортивной практике МПК также  используется для характеристики относительной  мощности аэробной работы, которая  выражается потреблением кислорода  в процентах от МПК. Например, относительная  мощность работы, выполняемой с потреблением кислорода 3 л/мин спортсменом, имеющим  МПК, равное 6 л/мин, будет составлять 50% от уровня МПК. ПАНО - это минимальная  относительная мощность работы, измеренная по потреблению кислорода в процентах  по отношению к МПК, при которой начинает включаться гликолитический путь ресинтеза АТФ. у нетренированных ПАНО составляет 40-50% от МПК, а у спортсменов ПАНО может достигать 70% от МПК. Более высокие величины ПАНО у тренированных объясняются тем, что аэробное фосфорилирование у них дает больше АТФ в единицу времени, и поэтому анаэробный путь образования АТФ - гликолиз - включается при больших нагрузках. Кислородный приход - это количество кислорода, использованное во время выполнения данной нагрузки для обеспечения аэробного ресинтеза АТФ. Кислородный приход характеризует вклад тканевого дыхания в энергообеспечение проделанной работы.

Под влиянием систематических тренировок, направленных на развитие аэробной работоспособности, в миоцитах возрастает количество митохондрий, увеличивается их размер, в них становится больше ферментов тканевого дыхания. Одновременно происходит совершенствование кислородтранспортной функции: повышается содержание миоглобина в мышечных клетках и гемоглобина в крови, возрастает работоспособность дыхательной и сердечнососудистой систем организма.

Анаэробные пути ресинтеза АТФ

Анаэробные пути ресинтеза АТФ являются дополнительными способами образования АТФ в тех случаях, когда основной путь получения АТФ - аэробный - не может обеспечить мышечную деятельность необходимым количеством энергии. Это бывает на первых минутах любой работы, когда тканевое дыхание еще полностью не развернулось, а также при выполнении физических нагрузок высокой мощности.

Креатинфосфатный путь ресинтеза АТФ (офеатинкиназный, алактатный)

В мышечных клетках всегда имеется  креатинфосфат - соединение, содержащее фосфатную группу, связанную с остатком креатина макроэнергической связью. Содержание креатинфосфата в мышцах в покое - 15-20 ммоль/кг. Креатинфосфат обладает большим запасом энергии и высоким сродством к АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ:

Эта реакция катализируется ферментом  креатинкиназой. В связи с этим данный путь ресинтеза АТФ еще называется креатинкиназным.

Креатинфосфатная реакция обратима, но ее равновесие смещено в сторону образования АТФ, и поэтому она начинает осуществляться сразу же, как только в миоцитах появляются первые порции АДФ.

При мышечной работе активность креатинкиназы значительно возрастает за счет активирующего воздействия на нее ионов кальция, концентрация которых в саркоплазме под действием нервного импульса увеличивается почти в 1000 раз. Другой механизм регуляции креатин-фосфатной реакции связан с активирующим воздействием на креатин-киназу креатина, образующегося в ходе данной реакции. За счет этих механизмов активность креатинкиназы в начале мышечной работы резко увеличивается и креатинфосфатная реакция очень быстро достигает максимальной скорости.

Креатинфосфат, обладая большим запасом химической энергии, является веществом непрочным. От него легко может отщепляться фосфорная кислота, в результате чего происходит циклизация остатка креатина, приводящая к образованию креатинина.Образование креатинина происходит без участия ферментов, спонтанно. Эта реакция необратима. Образовавшийся креатинин в организме не используется и выводится с мочой. Поэтому по выделению креахинина с мочой можно судить о содержании креатинфосфата в мышцах, так как в них находятся основные запасы этого соединения.

Синтез креатинфосфата в мышечных клетках происходит во время отдыха путем взаимодействия креатина с избытком АТФ.

Частично запасы креатинфосфата могут восстанавливаться и при мышечной работе умеренной мощности, при которой АТФ синтезируется за счет тканевого дыхания в таком количестве, которого хватает и на обеспечение сократительной функции миоцитов, и на восполнение запасов креатинфосфата. Поэтому во время выполнения физической работы креатинфосфатная реакция может включаться многократно.

Суммарные запасы АТФ и креатинфосфата часто обозначают термином фосфагены.

Образование креатина происходит в  печени с использованием трех аминокислот: глицина, метионина и аргинина. В  спортивной практике для повышения  в мышцах концентрации креатинфосфата используют в качестве пищевых добавок препараты глицина и метионина.

Креатинфосфатный путь ресинтеза АТФ характеризуется следующими величинами принятых количественных критериев:

Максимальная мощность составляет 900-1100 кал/мин-кг, что в три раза выше соответствующего показателя для аэробного ресинтеза. Такая большая величина обусловлена высокой активностью фермента креатинкиназы и, следовательно, очень высокой скоростью креатин-фосфатной реакции.

Время развертывания всего 1-2 с. Как  уже указывалось, исходных запасов  АТФ в мышечных клетках хватает  на обеспечение мышечной деятельности как раз в течение 1-2 с, и к моменту их исчерпания креатинфосфатный путь образования АТФ уже функционирует со своей максимальной скоростью. Такое малое время развертывания объясняется действием описанных выше механизмов регуляции активности креатинкиназы, позволяющих резко повысить скорость этой реакции.

Время работы с максимальной скоростью  всего лишь 8-10 с, что связано с  небольшими исходными запасами креатинфосфата в мышцах.

Главными преимуществами креатинфосфатного пути образования АТФ являются очень малое время развертывания и высокая мощность, Что имеет крайне важное значение для скоростно-силовых видов спорта. Главным недостатком этого способа синтеза АТФ, существенно ограничивающим его возможности, является короткое время его функционирования. Время поддержания максимальной скорости всего 8-10 с, к концу 30-й с его скорость снижается вдвое. А к концу 3-й мин интенсивной работы креатинфосфатная реакция в мышцах практически прекращается.

Исходя из такой характеристики креатинфосфатного пути ресинтеза АТФ, следует ожидать, что эта реакция окажется главным источником энергии для обеспечения кратковременных упражнений максимальной мощности: бег на короткие дистанции, прыжки, метания, подъем штанги и т.п. Креатинфосфатная реакция может неоднократно включаться во время выполнения физических нагрузок, что делает возможным быстрое повышение мощности выполняемой работы, развития ускорения на дистанции и финишный рывок.

Биохимическая оценка состояния креатинфосфатного пути ресинтеза АТФ обычно проводится по двум показателям: креатининовому коэффициенту и алактатному кислородному долгу.

Креатининовый коэффициент - это выделение  креатинина с мочой за сутки в расчете на 1 кг массы тела. У мужчин выделение креатинина колеблется в пределах 18-32 мг/сутки-кг, а у женщин - 10-25 мг/сутки-кг. Креатининовый коэффициент характеризует запасы креатинфосфата в мышцах, так как между содержанием креатинфосфата и образованием из него креатинина существует линейная зависимость, поскольку это превращение протекает неферментативным путем и является необратимым. Следовательно, с помощью креатининового коэффициента можно оценить потенциальные возможности этого пути образования АТФ, в том числе его метаболическую емкость.

Информация о работе Аэробное и анаэробное дыхание