Раскрытие неопределенностей

Автор: Пользователь скрыл имя, 29 Мая 2013 в 03:32, курсовая работа

Описание работы

Неопределенность результата измерения никогда не следует интерпретировать как саму погрешность, а также как погрешность, остающуюся после внесения поправки.
Задание: При изучении влияния коагулянта (сульфата железа с добавкой карбоната натрия) на коэффициент очистки растворов от радионуклидов (стронций-90) определяли исходную и конечную скорость счета пробы, которая составила 2999, 3002, 3005 и 612, 611, 615 имп. /мин соответственно. Объем исходного раствора составляет 20,0 ± 0,1 мл, объем пробы 0,200 ± 0,005 мл.

Работа содержит 1 файл

Курсовик ОНИ.docx

— 134.28 Кб (Скачать)


 

5) Вычислим коэффициенты по формуле:

 

 

 

 

 

 

 

 

 

6) Определим значимость коэффициентов , для этого воспользуемся формулами:

    

 

 

 

  не значимый  коэффициент 

  не значимый  коэффициент

  не значимый  коэффициент

  не значимый  коэффициент

   значимый  коэффициент

  значимый  коэффициент

  значимый  коэффициент

  значимый  коэффициент

 

7) Исходя из вычислений напишем уравнение математической модели в физических величинах:

 

 

 

 

 

Заключение.

Проверка значимости коэффициентов  bi , проведенная по критерию Стьюдента с использованием параллельных опытов, показала значимость половины всех коэффициентов полученного уравнения.

Из расчётов выведено, что МАКСИМАЛЬНЫЙ по своему значению коэффициент bi равен ,

 а МИНИМАЛЬНЫЙ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задание 4. Ионистор (Electric double-layer capacitor)

Найти патенты по вышеуказанной  теме.

 

1) EP1615244 (A1)

1.Название: Electric double-layer capacitor

2.Реферат: An electric double-layer capacitor consists in part of an electrolyte solution and an element constructed of a positive electrode and a negative electrode which are each composed of a current collecting substrate and an active material composition, and a separator situated between the positive and negative electrodes. When the element is in place within the capacitor, the portion of the separator sandwiched between the active material compositions of the respective electrodes has a pore volume which is at least 0.4 times the total pore volume of the positive and negative electrodes. This construction enables the separator to hold the electrolyte solution required by the electrodes for charging and discharging, thus endowing the capacitor with a high capacitance and a long cycle life.

3. Дата начала действия патента:  2006-01-11

4. Класс:  H01G9/00

5. Патентообладатель:  Nisshin Spinning

 

2) EP1693867  (A1)

1. Название: Electric double-layer capacitor, its manufacturing method, and electronic device using same  

2. Реферат: Provided are an electric double-layer capacitor which can have a reduced internal resistance and an improved withstand voltage with a simple structure, and a method for manufacturing the capacitor. The electric double-layer capacitor uses an alloy of carbon and aluminum as a material of the electrode. The electrode is formed by applying carbon to an aluminum foil and heating the aluminum foil with carbon thereon to a temperature at which the aluminum foil and the carbon are alloyed.

3. Дата начала действия патента:  2006-08-23

4. Класс:  H01G9/016

5.Патентообладатель: Matsushita Electric Industrial

 

 

 

3) EP1604378  (A2)

1. Название: Electric double-layer capacitor  

2. Реферат: Present invention relates to an electric double-layer capacitor having positive and negative electrodes containing nonporous carbon as an electrode active material. In the nonporous carbon, multiple layers of graphene having an average interplanar spacing d002 of 0.350 to 0.380 nm have been grown well. The positive and negative electrodesare impregnated with an electrolyte solution. The nonporous carbon is obtained by activating easily graphitizable carbon, which in turn is obtained by calcining needle coke or pitch made infusible. The electrolyte solution is either a liquid electrolyte having a planar molecular structure or an electrolyte solution consisting of a liquid electrolyte dissolved in an organic solvent.

3. Дата начала действия патента:  2005-12-14

4. Класс:  H01G9/00

5.Патентообладатель: Advanced Capacitor Technologies

 

 

 

 

 

 

4) EP1939902  (A1)

1. Название: Polarized electrode and electrical double-layer capacitor  

2. Реферат: The present invention provides a polarized electrode 12 containing mixed activated carbon composed of at least two activated carbons with different specific surface areas, and the specific surface area of the mixed activated carbon is not less than 900 m 2 /g and less than 1900 m 2 /g. By setting the specific surface area of the mixed activated carbon to less than 1900 m 2 /g, the resistance reduction ratio of the polarized electrode 12 rapidly increases.

3. Дата начала действия патента:   2008-07-02

4. Класс:  H01G9/058

5.Патентообладатель: Honda Motor, Kuraray, Kuraray Chemical

 

 

5) JP2010245074  (A) 

1. Название:  Electrolyte for electric double-layer capacitor  

2. Реферат: Problem to be solved:  to provide an electrolyte for an electric double-layer capacitor having a high electrical conductivity and is electrochemically stable. ; SOLUTION: The electrolyte contains as the main component a compound, in which a compound having isolated electron pairs, having <=-10 ev for the highest occupied molecular orbit energy and >=2 ev for the lowest unoccupied molecular orbit energy is coordinated to a solute, such as spirobipyrrolidinium tetrafluoroborate, N-butyl-N-methylpyrrolidinium tetrafluoroborate or N-methoxymethyl-N-methylpyrrolidinium, and liquefied. The electrolyte has a high conductivity, high electrochemical oxidization stability and high electrochemical reduction stability.

3. Дата начала действия патента:  2010-10-28

4. Класс: H01G9/038 

5.Патентообладатель: Nippon Chemi-Con ( NCC )

 

6) JP2005222973  (A)

1. Название:  Electrolyte for electric double-layer capacitor, and the electric double-layer capacitor 

2. Реферат:  Problem to be solved:  to provide an electrolyte for electric double-layer capacitor, exhibiting high solubility to solvent, high conductivity over a wide temperature range, and superior long term reliability, and to provide an electric double-layer capacitor produced using that electrolyte. ; SOLUTION: The electrolyte for electric double-layer capacitor is produced by dissolving a quarternary morpholinium salt represented by general Formula (1) and/or general Formula (2), as electrolyte, into an aprotic solvent, e.g.  Propylene carbonate or [gamma]-butyrolactone, in the range of 1.5-3.5 mol/L, and an electric double layer capacitor is produced using the electrolyte. In the general Formulas (1) and (2), X and Y represent a 1-4C alkyl group or halogen group, k and i represent a positive integer of 0 or 1-4, R<SB>1</SB>and R<SB>2</SB>represent a 1-8C alkyl group, n represents a positive integer of 3-7, and A represents an acid component.

3. Дата начала действия патента:   2005-08-18

4. Класс: H01G9/038

5.Патентообладатель: Japan Carlit co ltd

 

 

 

 

 

 

 

 

 

 

Задание 4.  Ионистор (Electric double-layer capacitor)

Найти журнальные статьи по вышеуказанной  теме.

 

1)

1. Название журнала:  Nanoscale

2. Дата публикации:  2012.01.26

3. Название статьи: Nanoplasmonic sensing of metal–halide complex formation and the electric double layer capacitor

4. Реферат: Many nanotechnological devices are based on implementing electrochemistry with plasmonic nanostructures, but these systems are challenging to understand. We present a detailed study of the influence of electrochemical potentials on plasmon resonances, in the absence of surface coatings and redox active molecules, by synchronized voltammetry and spectroscopy. The experiments are performed on gold nanodisks and nanohole arrays in thin gold films, which are fabricated by improved methods. New insights are provided by high resolution spectroscopy and variable scan rates. Furthermore, we introduce new analytical models in order to understand the spectral changes quantitatively. In contrast to most previous literature, we find that the plasmonic signal is caused almost entirely by the formation of ionic complexes on the metal surface, most likely gold chloride in this study. The refractometric sensing effect from the ions in the electric double layer can be fully neglected, and the charging of the metal gives a surprisingly small effect for these systems. Our conclusions are consistent for both localized nanoparticle plasmons and propagating surface plasmons. We consider the results in this work especially important in the context of combined electrochemical and optical sensors.

5. Цифровой идентификационный номер:  doi: 10.1039/C2NR11950A

 

 

 

 

2)

1. Название журнала:  Journal of Materials Chemistry A

2. Дата публикации: 2012.11.21

3. Название статьи: Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte

4. Реферат: Halogen (iodide, I−) added aqueous electrolyte facilitates the capacitive behaviour of biomass derived activated carbon based electric double layer capacitors. To produce economically viable electrodes in large scale for supercapacitors (SCs), the activated carbons (ACs) prepared from Eichhornia crassipes (common water hyacinth) by ZnCl2 activation. The prepared ACs were characterized by XRD, Raman, FT-IR and surface area, pore size and pore volume analysis. The electrochemical properties of the SCs were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability. The 3I−/I3−, 2I−/ I2, 2I3−/3I2 and I2/IO3− pairs produce redox peaks in CV and a large Faradaic plateau in charge–discharge curves. Similarly, I− ions improves the good ionic conductivity (lower charge transfer resistance) at the electrode/electrolyte interface which was identified through EIS studies. The calculated specific capacitance and energy density was 472 F g−1 and 9.5 W h kg−1 in aqueous solution of 1 M H2SO4. Interestingly, nearly two-fold improved specific capacitance and energy density of 912 F g−1 and 19.04 W h kg−1 were achieved when 0.08 M KI was added in 1 M H2SO4 electrolyte with excellent cycle stability over 4000 cycles. Subsequently, this improved specific capacitance and energy density was compared with 0.08 M KBr added to 1 M H2SO4 (572 F g−1, 11.6 W h kg−1) and 0.08 M KI added to 1 M Na2SO4 (604 F g−1, 12.3 W h kg−1) as electrolytes.

5. Цифровой идентификационный номер:  doi: 10.1039/C2TA00210H

 

 

 

 

 

3)

1. Название журнала:  Journal of Nanomaterials

2. Дата публикации: 2012.03.18

3. Название статьи:  Electric Double-Layer Capacitor Fabricated with Addition of Carbon Nanotube to Polarizable Electrode

4. Реферат: Electrical double-layer capacitor (EDLC) was fabricated with addition of carbon nanotube (CNT) to polarization electrodes as a conducting material. The CNT addition reduced the series resistance of the EDLC by one-twentieth, while the capacitance was not increased by the CNT addition. The low series resistance leaded to the high electrical energy stored in the EDLC. In this paper, the dependence of the series resistance, the specific capacitance, the energy, and the energy efficiencies on the CNT addition is discussed.

5. Цифровой идентификационный номер:  doi:10.1155/2012/929343

 

4)

1. Название журнала: RSC Advances  

2. Дата публикации: 2012.08.10

3. Название статьи:  Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor

4. Реферат: A hydroquinone mediated PVA–H2SO4 gel electrolyte (PHHQ) and activated carbon from bio-waste were prepared for supercapacitor fabrication. PHHQ delivered a higher capacitance (941 F g−1 at 1 mA cm−2) and energy density (20 Wh kg−1 at 0.33 W g−1) than the PVA–H2SO4 gel electrolyte (425 F g−1 at 1 mA cm−2, 9 Wh kg−1 at 0.33 W g−1).

5. Цифровой идентификационный номер:  doi: 10.1039/C2RA21387G

 

 

 

5)

1. Название журнала: Journal of Materials Chemistry A

2. Дата публикации: 2013.03.18

3. Название статьи:  Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor

4. Реферат: Activated carbon materials are prepared from phenolic resin precursors by physical activation to fabricate electrodes for electric double-layer capacitors (EDLCs). Pore size and surface area of the carbon materials are controlled during the synthesizing process and after the carbonization through activation in a CO2 atmosphere to different levels of burn-off. The resultant carbon materials were evaluated as EDLC electrodes, using electrochemical impedance spectroscopy (EIS) and galvanostatic charge–discharge (GCD) measurements with the organic electrolyte of spiro-(1,1′)-bipyrrolidinium tetrafluoroborate in propylene carbonate, SBPBF4/PC. The results of the study showed that the capacitance of carbon materials, as well as energy density of the EDLC cells, increased by increasing the level of burn-off (activation). The 46% activated carbon gave a capacitance of 160 F g−1 and an energy density of 35 W h kg−1, at a current density of 1 mA cm−2. The long term cycling tests showed high cycling stability of these carbon materials.

5. Цифровой идентификационный номер:  doi: 10.1039/C3TA01638B

 

6)

1. Название журнала:  Applied Physics Letters

2. Дата публикации:  2006.04.11

3. Название статьи:  Electric double-layer capacitor based on zinc metaphosphate glass-derived hydrogel

4. Реферат: The present work reports the electrochemical characteristics of an electric double-layer capacitor (EDC) cell with an electrolyte consisting of a glass-derived zinc metaphosphate hydrogel (ZP gel) or H3PO4 solution. The EDC cell showed specific discharge capacities of 2.06 and 3.21 F/g using the ZP gel and H3PO4 solution, respectively. The EDC cell performed higher voltage retentionability for self-discharge behavior after constant voltage using the ZP gel (0.83 V after 24 h) than using H3PO4 solution (0.45 V after 24 h). Self-discharge behaviors of the ZP gel and H3PO4 solution were controlled by a diffusion and current leakage process, respectively. These results show that the ZP gel has a great potential for practical use as an EDC electrolyte.

5. Цифровой идентификационный номер:  doi: 10.1063/1.2190709

 


Информация о работе Раскрытие неопределенностей