Руды цветных металлов

Автор: Пользователь скрыл имя, 25 Марта 2013 в 21:06, реферат

Описание работы

Полезные ископаемые по своим техническим и практическим свойствам могут иметь различное назначение в промышленности. Виды полезных ископаемых по назначению:
Полезные ископаемые горючего типа – к этим минеральным образованиям относят такие полезные ископаемые, как уголь, нефть, природный газ, сланцы, торф, то есть те полезные ископаемые, переработка которых позволяет получать тепловую энергию.
Полезные ископаемые нерудного типа – это всевозможные минеральные образования, которые используются в строительной отрасли. К ним относятся песок, известняк, глина и тому подобное.
Руды – это черные, цветные руды, а также руды благородных металлов.
Самоцветные и драгоценные камни

Содержание

Введение…………………………………………………………...............3
1.Магний……………………………………...…........................................4
2.Олово...………………………...…………............................................…6
3.Никель………………………………….................. .................................9
4.Висмут…………………………………………...................................…11




Список используемой литературы………………… ……………...........13

Работа содержит 1 файл

Документ Microsoft Office Word.docx

— 60.51 Кб (Скачать)

 При комнатной температуре  олово, подобно соседу по группе  германию, устойчиво к воздействию  воздуха или воды. Такая инертность  объясняется образованием поверхностной  пленки оксидов. Заметное окисление  олова на воздухе начинается  при температурах выше 150°C:

Sn + O2 = SnO2.

При нагревании олово реагирует  с большинством неметаллов. При этом образуются соединения в степени  окисления +4, которая более характерна для олова, чем +2. Например:

Sn + 2Cl2 = SnCl4

С концентрированной соляной  кислотой олово медленно реагирует:

Sn + 4HCl = SnCl4 + H2

При нагревании олово, подобно свинцу, может реагировать  с водными растворами щелочей. При  этом выделяется водород и образуется гидроксокомплекс Sn (II), например:

Sn + 2KOH +2H2O = K2[Sn(OH)4] + H2

При хранении на воздухе  монооксид SnO постепенно окисляется:

2SnO + O2 = 2SnO2.

 

История открытия: когда человек впервые познакомился с оловом точно сказать нельзя. Олово и его сплавы известны человечеству с древнейших времен. Упоминание об олове есть в ранних книгах Ветхого Завета. Сплавы олова с медью, так называемые оловянные бронзы, по-видимому, стали использоваться более чем за 4000 лет до нашей эры. А с самим металлическим оловом человек познакомился значительно позже, примерно около 800 года до нашей эры.

Из чистого олова в  древности изготовляли посуду и  украшения, очень широко применяли  изделия из бронзы.

Нахождение в природе: олово — редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Содержание олова в земной коре составляет, по разным данным, от 2·10–4 до 8·10–3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).

Получение: для добычи олова в настоящее время используют руды, в которых его содержание равно или немного выше 0,1%. На первом этапе руду обогащают (методом гравитационной флотации или магнитной сепарации). Таким образом удается повысить содержание олова в руде до 40-70%. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Затем полученный таким образом оксид SnO2 восстанавливают углем или алюминием (цинком) в электропечах.

Особо чистое олово  полупроводниковой чистоты готовят  электрохимическим рафинированием или методом зонной плавки.

Применение: важное применение олова — лужение железа и получение белой жести, которая используется в консервной промышленности. Для этих целей расходуется около 33% всего добываемого олова. До 60% производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. Олово способно прокатываться в тонкую фольгу — станиоль, такая фольга находит применение при производстве конденсаторов, органных труб, посуды, художественных изделий. Олово применяют для нанесения защитных покрытий на железо и другие металлы, а также на металлические изделия (лужение). Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («сусальное золото»).

 Физиологическое действие: о роли олова в живых организмах практически ничего не известно. В теле человека содержится примерно (1-2)·10–4 % олова, а его ежедневное поступление с пищей составляет 0,2-3,5 мг. Олово представляет опасность для человека в виде паров и различных аэрозольных частиц, пыли. При воздействии паров или пыли олова может развиться станноз — поражение легких. Очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м3, ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг. Токсическая доза олова для человека — 2 г.

Интересные факты.

СО ДНА ОКЕАНА. В 1976 году начало работать необычное предприятие, которое сокращенно называют РЭП. Расшифровывается оно так: разведочно-эксплатуционное предприятие. Оно размещается в основном на кораблях. За Полярным кругом, в море Лаптевых, в районе Ванькиной губы РЭП добывает с морского дна оловоносный песок. Здесь же, на борту одного из судов, работает обогатительная фабрика.

"ОЛОВЯННАЯ ЧУМА". В 1912 году погибла отправившаяся на штурм Южного полюса экспедиция Скотта. Среди снежной пустыни люди остались без горючего, поскольку керосин вытек из разрушившихся по неизвестной причине жестяных баков. Оказалось, что олово паяных швов превратилось в серый порошок — его поразила "оловянная чума". Полиморфное превращение "белого олова" в "серое" было известно давно — на складах многих армий, бывало, не досчитывались то пуговиц на шинелях, то котелков. Однако далеко не сразу разобрались, что развивается это явление только в условиях низких температур — быстрее всего процесс идет при –33 °C. Причем, если пораженные вещи соседствуют с целыми, происходит заражение "здорового" металла, прямо как при настоящей "человеческой" чуме. "Оловянная чума" погубила многие ценнейшие коллекции оловянных солдатиков. Например, в запасниках питерского музея Александра Суворова превратились в труху десятки фигурок — в подвале, где они хранились, лопнули зимой батареи отопления./2,4,5/

3.Ni — Никель

НИКЕЛЬ (лат. Niссolum), Ni, химический элемент с атомным номером 28, атомная масса 58,69. В периодической системе Д. И. Менделеева никель входит в группу VIIIВ и вместе с железом и кобальтом образует в 4-м периоде в этой группе триаду близких по свойствам переходных металлов. Конфигурация двух внешних электронных слоев атома никеля 3s2p6d84s2. Образует соединения чаще всего в степени окисления +2 (валентность II), реже — в степени окисления +3 (валентность III) и очень редко в степенях окисления +1 и +4 (соответственно валентности I и IV).

Простое вещество никель в  компактном виде — блестящий серебристо-белый  металл.

Физические и химические свойства: никель — ковкий и пластичный металл. Он обладает кубической гранецентрированной кристаллической решеткой. Температура плавления 1455°C, температура кипения около 2900°C, плотность 8,90 кг/дм3.

На воздухе компактный никель стабилен. Поверхность никеля покрыта тонкой пленкой оксида NiO, которая прочно предохраняет металл от дальнейшего окисления. С водой и парами воды, содержащимися в воздухе, никель тоже не реагирует. Практически не взаимодействует никель и с такими кислотами, как серная, фосфорная, плавиковая и некоторыми другими.

Металлический никель реагирует  с азотной кислотой, причем в результате образуется нитрат никеля (II) Ni(NO3)2 и выделяется соответствующий оксид азота, например:

3Ni + 8HNO3 = 3Ni(NO3)2 + 2NO + 4H2O

Только при нагревании на воздухе до температуры выше 800°C металлический никель начинает реагировать  с кислородом с образованием оксида NiO.

Оксид никеля обладает основными  свойствами.

При нагревании никель реагирует  со всеми галогенами с образованием дигалогенидов NiHal2.

При добавлении щелочи к  раствору соли никеля (II) выпадает зеленый  осадок гидроксида никеля:

Ni(NO3)2 + 2NaOH = Ni(OH)2 + 2NaNO3

История открытия: уже с 17 в. рудокопам Саксонии (Германия) была известна руда, которая по внешнему виду напоминала медные руды, но меди при выплавке не давала. Ее называли купферникель (нем. Kupfer — медь, а Nickel — имя гнома, подсовывавшего горнякам вместо медной руды пустую породу). Как оказалось впоследствии, купферникель — соединения никеля и мышьяка, NiAs. История открытия никеля растянулась почти на полвека. Первым вывод о присутствии в купферникеле нового «полуметалла» (то есть, по тогдашней терминологии, простого вещества, промежуточного по свойствам между металлами и неметаллами) сделал шведский металлург А. Ф. Кронстедт в 1751 году. Однако более двадцати лет это открытие оспаривалось и господствовала точка зрения, что Кронстедт получил не новое простое вещество, а какое-то соединение с серой то ли железа, то ли висмута, то ли кобальта, то ли какого-то другого металла.

Только в 1775 г., через 10 лет  после смерти Кронстедта, швед Т. Бергман  выполнил исследования, позволявшие  заключить, что никель — это простое  вещество. Но окончательно никель как  элемент утвердился только в начале 19-го века, в 1804 году, после скрупулезных исследований немецкого химика И. Рихтера, который для очистки провел 32 перекристаллизации никелевого купороса (сульфата никеля) и в результате восстановления получил чистый металл.

Нахождение в природе: в земной коре содержание никеля составляет около 8·10–3 % по массе. Возможно, громадные количества никеля — около 17·1019 т — заключены в ядре Земли, которое, по одной из распространенных гипотез, состоит из железоникелевого сплава. Если это так, то Земля примерно на 3 % состоит из никеля, а среди составляющих планету элементов никель занимает пятое место — после железа, кислорода, кремния и магния. Никель содержится в некоторых метеоритах, которые по составу представляют собой сплав никеля и железа (так называемые железоникелевые метеориты). Разумеется, как практический источник никеля такие метеориты значения не имеют.В морской воде содержание никеля составляет примерно 1·10–8–5·10–8 %.

Получение: значительную часть никеля получают из сульфидных медно-никелевых руд. Из обогащенного сырья сначала готовят штейн — сульфидный материал, содержащий, кроме никеля, еще и примеси железа, кобальта, меди и ряда других металлов. Методом флотации получают никелевый концентрат. Далее штейн обычно подвергают обработке для отделения примесей железа и меди, а затем обжигают и образовавшийся оксид восстанавливают до металла. Существуют и гидрометаллургические методы получения никеля, в которых для его извлечения из руды используют раствор аммиака или серной кислоты. Для дополнительной очистки черновой никель подвергают электрохимическому рафинированию.

Применение: основная доля выплавляемого никеля (до 80%) расходуется на приготовление различных сплавов. Так, добавление никеля в стали позволяет повысить химическую стойкость сплава, и все нержавеющие стали обязательно содержат никель. Кроме того, сплавы никеля характеризуются высокой вязкостью и используются при изготовлении прочной брони. Сплав железа и никеля, содержащий 36-38% никеля, обладает удивительно низким коэффициентом термического расширения (это — так называемый сплав инвар), и его применяют при изготовлении ответственных деталей различных приборов.

При изготовлении сердечников  электромагнитов широкое применение находят сплавы под общим названием  пермаллои. Эти сплавы, кроме железа, содержат от 40 до 80 % никеля. Общеизвестны применяемые в различных нагревателях нихромовые спирали, которые состоят  из хрома (10-30 %) и никеля. Из никелевых  сплавов чеканятся монеты. Общее  число различных сплавов никеля, находящих практическое применение, достигает нескольких тысяч.

Высокая коррозионная стойкость  никелевых покрытий позволяет использовать тонкие никелевые слои для защиты различных металлов от коррозии путем  их никелирования. Одновременно никелирование  придает изделиям красивый внешний  вид. В этом случае для проведения электролиза используют водный раствор  двойного сульфата аммония и никеля (NH4)2Ni(SO4)2.

Никель широко используют при изготовлении различной химической аппаратуры, в кораблестроении, в  электротехнике, при изготовлении щелочных аккумуляторов, для многих других целей.

Специально приготовленный дисперсный никель (так называемый никель Ренея) находит широкое применение как катализатор самых разных химических реакций. Оксиды никеля используют при производстве ферритных материалов и как пигмент для стекла, глазурей и керамики; оксиды и некоторые  соли служат катализаторами различных  процессов.

Биологическая роль: никель относится к числу микроэлементов, необходимых для нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что никель принимает участие в ферментативных реакциях у животных и растений. В организме животных он накапливается в ороговевших тканях, особенно в перьях. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям — у растений появляются уродливые формы, у животных — заболевания глаз, связанные с накоплением никеля в роговице. Токсическая доза (для крыс) — 50 мг. Особенно вредны летучие соединения никеля, в частности, его тетракарбонил Ni(CO)4. ПДК соединений никеля в воздухе составляет от 0,0002 до 0,001 мг/м3 (для различных соединений)./2,3/

4.Bi — Висмут

ВИСМУТ (лат. Bismuthum), химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804.

Серебристо-серый металл с розоватым оттенком. Природный  висмут состоит из одного нуклида  209Bi. Конфигурация внешнего электронного слоя 6s2p3. Висмут образует соединения в степенях окисления +3, +5, –3 (валентности III и V) и очень редко +1 и +2.

В периодической системе  висмут — последний стабильный (не радиоактивный) элемент. По некоторым  данным, 209Bi слабо радиоактивен, но его период полураспада столь велик (около 1017 лет), что этот нуклид можно считать стабильным.

Название: введен в химическую номенклатуру в 1819 году шведским химиком Й. Берцелиусом. Происхождение названия элемента однозначного объяснения не имеет.

Свойства: при обычном давлении существует только одна ромбоэдрическая модификация висмута. Температура плавления 271,4°C (висмут — один из самых легкоплавких металлов), температура кипения 1564°C, плотность 9,80 кг/дм3. При плавлении висмут уменьшается в объеме (как лед), т.е. твердый висмут легче жидкого. При высоких давлениях существуют другие модификации металлического висмута. Висмут хрупок, легко растирается в порошок. Висмут — самый сильный диамагнетик среди металлов.

В сухом воздухе висмут не окисляется, во влажной атмосфере  постепенно покрывается пленкой  оксидов. При нагревании выше 1000°С сгорает  с образованием основного оксида Bi2O3.

Растворимые соли висмута  ядовиты.

История открытия: висмут известен с 15 века, но его долго принимали за разновидность олова, свинца или сурьмы. В 1529 году немецкий ученый в области горного дела и металлургии Г. Агрикола дал первые сведения о металлическом висмуте, его добыче и переработке. Химическую индивидуальность висмута первым установил в 1739 году И. Потт.

Получение: источником висмута служат свинцовые, оловянные и другие руды, где он содержится как примесь. При промышленном получении висмута сначала из свинцовых и медных руд (содержание висмута в которых обычно составляет десятые и даже сотые доли процента) готовят концентрат. Концентраты перерабатывают гидрометаллургическим путем, иногда их подвергают металлотермической обработке (с использованием в качестве восстановителей кальция (Ca) или магния (Mg)). На заключительной стадии очистки висмута применяют экстракцию, различные химические и электрохимические методы. В России первые килограммы металлического висмута получил в 1918 году К. А. Ненадкевич, разработавший технологию его выплавки.

Нахождение в природе: содержание висмута в земной коре очень мало и составляет всего 9·10–7% (71-е место среди всех элементов). В природе иногда встречается в свободном виде. Важнейшие минералы: висмутин, или висмутовый блеск, Bi2S3 (81,3% Bi), козалит Pb2Bi2S5 (42% Bi), бисмит Bi2O3(89,7% Bi) и некоторые другие. Висмут — редкий рассеянный элемент, его собственные минералы (например, висмутин, бисмит) очень редки.

Информация о работе Руды цветных металлов