Модель Пуанкаре геометрии Лобачевского

Автор: Пользователь скрыл имя, 22 Января 2012 в 15:44, курсовая работа

Описание работы

Модель Пуанкаре геометрии Лобачевского. (Французский ученый Анри Пуанкаре (1854—1912) — крупнейший математик. Описываемая далее модель была предложена им в 1882г.) Роль плоскости Лобачевского играет открытая полуплоскость; роль прямых выполняют содержащиеся в ней полуокружности с центрами на ограничивающей ее прямой и лучи, перпендикулярные этой прямой. Роль наложений выполняют композиции инверсий относительно этих полуокружностей и отражений в лучах. Все аксиомы евклидовой геометрии здесь выполняются, кроме аксиомы параллельных (рис. 4-1, а), тем самым в этой модели выполняется геометрия Лобачевского.

Работа содержит 1 файл

Модель Пуанкаре геометрии Лобачевского.docx

— 18.23 Кб (Скачать)

Модель Пуанкаре геометрии Лобачевского. (Французский ученый Анри Пуанкаре (1854—1912) — крупнейший математик. Описываемая далее модель была предложена им в 1882г.) Роль плоскости Лобачевского играет открытая полуплоскость; роль прямых выполняют содержащиеся в ней полуокружности с центрами на ограничивающей ее прямой и лучи, перпендикулярные этой прямой. Роль наложений выполняют композиции инверсий относительно этих полуокружностей и отражений в лучах. Все аксиомы евклидовой геометрии здесь выполняются, кроме аксиомы параллельных (рис. 4-1, а), тем самым в этой модели выполняется геометрия Лобачевского. 

Опишем эту  модель более подробно и докажем  сказанное. Берем на обычной евклидовой плоскости какую-нибудь прямую р и ограниченную ею открытую полуплоскость Р. Прямую р назовем граничной прямой. Полуплоскость Р будет играть роль плоскости Лобачевского; мы будем называть ее «плоскостью» в кавычках. Точками в модели будут точки этой «плоскости», т. е. полуплоскости Р. За «прямые» в модели принимаем, во-первых, содержащиеся в Р полуокружности, центры которых лежат на граничной прямой (рис. 4-1, а). «Отрезок» АВ в модели — это дуга такой полуокружности с концами A, В. 

Подчеркнем, что  конец «отрезка» не может быть концом полуокружности, представляющей прямую; ее концы исключены вместе с граничной прямой; «плоскость»  — это открытая полуплоскость. Точка «прямой» служит общим началом двух «лучей» — двух дуг полуокружности (с исключенными концами). «Углом» назовем фигуру из двух «лучей» с общим началом, не содержащихся в одной «прямой» (рис. 4-1, а). 

Помимо указанных  «прямых» есть еще «прямые» — это  полупрямые, перпендикулярные граничной  прямой. Они являются пределами рассмотренных  полуокружностей (рис. 4-1,б). Когда центр полуокружности удаляется по граничной прямой, а полуокружность проходит через данную точку, то она «распрямляется» и в пределе переходит в полупрямую. Поэтому мы дальше будем мыслить указанные полупрямые среди «прямых» модели в качестве полуокружностей, как «полуокружности бесконечного радиуса». Это позволит обойтись без скучных оговорок, касающихся этих полупрямых, причем, однако, следует помнить условность этого и быть готовым проверять утверждения для таких «полуокружностей». («Отрезок» на такой «прямой» — это обычный отрезок, а «лучи» — один обычный луч, другой — отрезок с исключенным концом на граничной прямой.) 

Рассмотрим теперь в этой модели те аксиомы, в которые  не входит понятие о равенстве  отрезков и углов. 

Аксиома параллельных для прямых относится к таким аксиомам. В данной модели она явно не выполняется: через точку А, не лежащую на «прямой» а, проходит бесконечно много «прямых», не имеющих с а общих точек (рис. 4-1,а). 

Все прочие аксиомы, говорящие о связи точек и  отрезков или точек и прямых, о  взаимном расположении точек и прямых, здесь выполняются. Так, на рис. 4-2 указано  построение отрезка с данными  концами. Далее, возьмем полуокружность, представляющую «прямую» в модели. Проведем прямую l, касающуюся этой полуокружности и параллельную граничной прямой.    Спроектируем полуокружность из ее центра на прямую l (рис.4-3). Получим взаимно однозначное, сохраняющее порядок точек, соответствие между точками прямой и полуокружности, т. е. «прямой» модели. Все свойства, выраженные в аксиомах, будут одни и те же. Они также очевидно выполнены на полупрямых, представляющих «прямые» модели. Аксиома деления плоскости также выполняется. «Прямая» — полуокружность — делит плоскость на две области — внутреннюю и внешнюю. Это и будут «полуплоскости» в нашей модели. Из одной в другую нельзя перейти по какой-либо дуге, не пересекая разделяющую их «прямую» — полуокружность. 

Остается определить равенство «отрезков» и «углов»  так, чтобы выполнялись соответствующие  аксиомы. Это мы сделаем, определив  «наложение». Сначала определим  «отражение в прямой». За «отражение в прямой» примем инверсию в той окружности, полуокружность которой представляет данная «прямая». Если же «прямая» — это полупрямая, перпендикулярная граничной прямой, то «отражением» в ней будет обычное отражение. 

«Наложением»  в модели называем любую композицию «отражений». «Равными» считаем  фигуры, в частности, «отрезки» и  «углы», совмещаемые «наложением». 

Это определение  сразу приводит к выводу: углы, «равные» в модели, равны без кавычек  — в обычном смысле. В самом  деле, углы при инверсиях сохраняются, т. е. преобразуются в равные, но они  «равны» в модели по определению. Обратно: углы, «равные» в модели, —  это т.е., которые преобразуются друг в друга «наложениями», т. е. инверсиями, и, стало быть, они равны в обычном смысле. 

При инверсии в  окружности с центром на граничной  прямой эта прямая и полуплоскость  Р отображаются на себя. Поэтому содержащаяся в Р полуокружность с центром на граничной прямой отображается на такую же полуокружность. В модели это означает, что при «отражениях» «прямые» переходят в «прямые». Очевидно, что также «лучи» переходят в «лучи» и «отрезки» — в «отрезки». 

Обратимся к  откладыванию отрезков и углов в  модели. Понятия, относящиеся к модели, будем предварять знаком *. 

Пусть даны точка А, *луч а с началом А, *отрезок АВ на этом *луче и *угол ab с вершиной А, образованный *лучом а вместе с *лучом b. Пусть даны также точка А', исходящий из нее *луч а', и отмечена * полуплоскость Q, ограниченная *прямой, содержащей *луч а' (рис. 4-4,а). Нам нужно произвести *наложение, переводящее точку А в А’, *луч а — в а' и *луч b — в *луч, лежащий в *полуплоскости Q так, что *угол, *равный ab, отложится от а' в эту *полуплоскость. 

Проведем прямую АА', и пусть она пересекает граничную  прямую р в точке О (рис. 4-4,б). Произведем инверсию с центром О, которая переведет А в А'. *Луч а перейдет в *луч а" с началом А', он образует с *лучом а' *угол а'а"). 

Проведем прямую q (без кавычек), делящую *угол а'а" пополам, и построим окружность с центром на граничной прямой, касающуюся прямой q (кстати, укажите такое построение). Инверсия в этой окружности переведет *луч а" в а' (почему?). В смысле модели это значит, что *отражение в соответствующей *прямой переводит *луч а" в а'. Таким образом, два отражения переводят точку А в А' и *луч а — в а'. Вместе с *лучом вся содержащая его *прямая  — полуокружность — переходит в *прямую  — полуокружность,— содержащую *луч а'. *Полуплоскости, ограниченные *прямой , отображаются на *полуплоскости, ограниченные *прямой . *Луч b, служащий стороной данного *угла ab, переходит в *луч b" с началом А'. Но он может оказаться не в той *полуплоскости, которая была заранее отмечена. Тогда нужно произвести еще *отражение в *прямой, содержащей *луч а', т. е. ∆инверсию в окружности, содержащей эту *прямую. При этом на самой *прямой  ничего не происходит: все ее точки остаются неподвижными. И только *луч b" перейдет в *луч b, лежащий в указанной *полуплоскости. 

Если на *луче а была отмечена какая-нибудь точка В, и тем самым отмечен *отрезок АВ, то эта точка перейдет в определенную точку В' на *луче а' и *отрезок АВ — в *отрезок А'В' на этом * луче. Так мы получаем результат: на каждом *луче а' можно от его начала отложить *отрезок, *равный данному, т. е. для любого данного *отрезка АВ на данном *луче с началом А' есть такая точка В', что *отрезок АВ можно перевести в *отрезок А'В' путем *наложения. 

Совершенно так  же то, что *луч b перейдет в *луч b', лежащий в нужной полуплоскости, что и *угол а'b' равен данному ab, позволяет утверждать: 

От каждого *луча от его начала по данную сторону  от *прямой, его содержащей, можно отложить *угол, равный данному. 

Остается доказать, что *угол откладывается единственным образом, так же, как и *отрезок (или, по нашей аксиоме меньшего отрезка, отрезок, содержащийся в данном и не совпадающий с ним, не может быть равен ему). 

Утверждение о  единственности откладывания угла сводится, очевидно, к следующему: 

Если *лучи b, с, исходящие из начала *луча а, образуют с ним равные углы и лежат с одной стороны от него  (в одной полуплоскости), то они совпадают. 

Но *углы, равные в модели, равны в обычном «евклидовом» смысле, а для обычных углов  сказанное, очевидно, верно. *Лучи b, с содержатся в окружностях с центрами на данной прямой р. Раз они образуют с *лучом а данный угол, то, значит, дана касательная к указанным окружностям в точке А. Но окружность с центром на данной прямой, касающаяся другой прямой в данной ее точке, только одна. Значит, *лучи b, с совпадают. Итак, *угол откладывается единственным образом. 

*Отрезок, *равный  данному, также откладывается на данном *луче единственным образом. Действительно, пусть *отрезок АВ, *равный данному, отложен на данном *луче а с началом А. Если бы можно было отложить другой *отрезок, АС, равный тому же, то это значило бы, что есть *наложение (отличное от тождественного), отображающее *луч сам на себя. Оно отображает тогда на себя и всю содержащую его *прямую — полуокружность а. Если же *наложение переставляет *полуплоскости, ограниченные *прямой а, то добавив отражение в ней, можно добиться того, что и полуплоскости эти будут отображаться каждая на себя. 

В таком случае, ввиду сохранения углов, все *лучи, исходящие  из точки А, будут отображаться на себя. Значит, при такой композиции инверсий (и отражений в вертикальных лучах) все концы лучей на граничной прямой остаются на месте. Вместе с ними отображаются на себя все полуокружности с концами на граничной прямой, т. е. *прямые модели. Но каждую точку можно получить в пересечении этих *прямых. Поэтому все точки отображаются на себя — «остаются на месте» — так что рассматриваемое *наложение оказывается тождественным вопреки предположению. 

Этим единственность откладывания на данном луче отрезка, равного данному, доказана. 

На этом доказательство того, что в рассмотренной модели выполняется геометрия Лобачевского, заканчивается. Требование аксиомы  меньшего отрезка, что в отрезок  нельзя уместить ему равный, заведомо Выполняется при том, что уже доказано. Впрочем, доказательство того, что оно выполнено, читатель может провести сам. 

Описанную модель плоскости Лобачевского можно еще  назвать конформной, поскольку в  ней наложения представляются инверсиями — преобразованиями, сохраняющими углы.

Информация о работе Модель Пуанкаре геометрии Лобачевского