Функциональное тестирование Web-приложений на основе технологии UniTesK

Автор: Пользователь скрыл имя, 11 Марта 2012 в 13:43, реферат

Описание работы

В данной статье Web-приложениями мы будем называть любые приложения, предоставляющие Web-интерфейс. В настоящее время такие приложения получают все большее распространение: системы управления предприятиями и драйверы сетевых принтеров, интернет-магазины и коммутаторы связи – это только небольшая часть приложений, обладающих Web интерфейсом. В отличие от обычного графического пользовательского интерфейса Web-интерфейс отображается не самим приложением, а стандартизированным посредником – Web-браузером.

Содержание

Введение……………………………………………………….......................2
Существующие подходы……..……………………………………………..4
Технология UniTesK………………………………………………………....6
Применение UniTesK для тестирования Web-приложений……………….8
Дополнительная инструментальная поддержка……………………………9
Направления дальнейшего развития………………………………………14
Заключение……………………………………………………

Работа содержит 1 файл

referat ergalieva.doc

— 106.00 Кб (Скачать)

Все события, происходящие в процессе тестирования, находят свое отражение в трассе теста. На основе трассы генерируются различные отчеты, помогающие в анализе результатов тестирования.

Процесс разработки тестов с помощью технологии UniTesK можно представить в виде следующей последовательности шагов4:

(1) анализ функциональности тестируемой системы;

(2) формализация требований к функциональности;

(3) связывание формализованных требований с реализацией;

(4) разработка сценариев тестирования;

(5) исполнение тестов и анализ результатов.

Рассмотрим каждый из этих шагов более подробно.

В результате анализа функциональности необходимо определить интерфейс тестируемой системы. Для этого требуется выделить функции, предоставляемые системой, и для каждой такой функции определить, что выступает в качестве ее входных и выходных параметров.

На этапе формализации требований для каждой интерфейсной функции, выявленной на предыдущем шаге, необходимо описать ограничения на значения выходных параметров в зависимости от значений входных параметров и истории предыдущих взаимодействий с тестируемой системой. Для этого в технологии UniTesK используется широко известный подход программных контрактов [15]. В основе этого подхода лежат инварианты данных, а также предусловия и постусловия интерфейсных операций.

При связывании требований с реализацией необходимо описать, как каждая интерфейсная функция отображается на реализацию тестируемой системы. В рамках этого отображения требуется установить правила преобразования вызовов интерфейсных функций в последовательность действий над тестируемой системой, а также правила построения модели состояния тестируемой системы. Для систем с прикладным программным интерфейсом, когда взаимодействие через интерфейсную функцию соответствует вызову функции тестируемой системы, установление такого отображения может быть автоматизировано при помощи интерактивных шаблонов, предоставляемых инструментами семейства UniTesK.

Тестовые сценарии строятся на основе конечно-автоматной модели целевой системы, которая используется для динамической генерации последовательностей тестовых воздействий. Сценарий определяет, что именно рассматривается как состояние автомата, и какие интерфейсные функции с какими наборами аргументов могут быть вызваны в каждом состоянии. Алгоритмы UniTesK обеспечивают вызов каждой интерфейсной функции с каждым набором ее параметров в каждом достижимом состоянии. Для описания сценария необходимо задать способ идентификации состояний и способ итерации входных воздействий в зависимости от текущего состояния. Инструменты семейства UniTesK предоставляют интерактивные шаблоны, которые позволяют упростить разработку тестовых сценариев.

На заключительном этапе технологического процесса происходит выполнение созданных тестов, автоматическая генерация отчетов о результатах тестирования и анализ этих результатов. На основе анализа принимаются решения о создании запросов на исправление дефектов, обнаруженных в тестируемой системе, или о доработке самих тестов с целью повышения уровня покрытия.

 

2.1 Применение UniTesK для тестирования Web-приложений

 

Технология UniTesK применялась для тестирования Web-приложений в нескольких проектах. В ходе разработки тестов выяснилось, что большая часть усилий тратится на создание медиаторов, которые переводят вызов интерфейсных функций в последовательность воздействий на Web-приложение. Анализ опыта показал, что большая часть этой работы может быть автоматизирована, опираясь на стандартизированную архитектуру пользовательского интерфейса Web-приложений. В принципе, эту особенность Web-приложений можно было бы использовать для автоматизации других шагов технологии UniTesK. В этом разделе будут рассмотрены варианты моделирования поведения Web-приложения в контексте возможной автоматизации шагов технологии UniTesK.

Моделирование определяется способом выделения интерфейсных функций и способом построения модели состояния Web-приложения. Первый вариант основывается на стандартном протоколе HTTP, который служит для взаимодействия между Web-браузером и Web-приложением. Поведение Web-приложения рассматривается на уровне HTTP, и этот уровень считается единственно возможным для обращения к Web-приложению. Во втором варианте за основу берется формальное описание интерфейса в виде HTML, которое используется Web-браузером для организации взаимодействия с пользователем. В этом варианте взаимодействие с Web-приложением происходит только посредством Web-браузера. И, наконец, в третьем варианте поведение Web-приложения моделируется без привязки к конкретному способу обращения, основываясь лишь на тестируемой функциональности.

При моделировании на уровне HTTP описание функциональности и тестирование осуществляется в терминах HTTP-запросов, что заставляет пользователя разбираться с большим объемом технической информации, повышая тем самым требования к его квалификации. Моделирование на уровне Web-браузера позволяет описывать функциональность и проводить тестирование в терминах элементов пользовательского интерфейса и воздействий на них, что является естественным языком для разработчика тестов. Описание, выполненное в таких терминах, позволяет отразить требования к функциональности на приемлемом уровне абстракции, не сосредотачиваясь на деталях технологий, лежащих в основе Web-приложения. Третий вариант не ограничивает пользователя в свободе выбора уровня описания функциональности, но вместе с тем не предоставляет дополнительных возможностей по автоматизации, возлагая всю работу на пользователя, что требует от него определенных навыков и опыта.

Описанные варианты моделирования были опробованы в ходе тестирования Web-приложений с использованием технологии UniTesK. Все шаги технологического процесса были реализованы с использованием инструментов UniTesK без дополнительной автоматизации, которая упоминалась в обзоре вариантов моделирования. Анализ процесса разработки показал необходимость и подтвердил выводы о возможности дополнительной автоматизации шагов технологии. Кроме того, опыт передачи тестовых наборов, разработанных с помощью технологии UniTesK, в реальное использование показал, что моделирование без привязки к уровню взаимодействия требует от разработчиков и последующих пользователей хорошего знания технологии UniTesK. В то же время, моделирование на уровне Web-браузера более естественно воспринималось пользователями, тестирующими Web-приложения и не владеющими технологией UniTesK.

 

2.2 Дополнительная инструментальная поддержка

 

Основной задачей, возлагаемой на инструментальную поддержку, является упрощение работы пользователя по созданию компонентов тестовой системы. Это достигается за счет дополнительной автоматизации шагов технологического процесса UniTesK с учетом специфики Web-приложений. Первый шаг технологического процесса UniTesK – анализ функциональности тестируемой системы – не предполагает инструментальной поддержки, однако для Web-приложений можно предложить способ выделения интерфейсных функций на основе автоматизированного анализа интерфейса Web-приложения. На шаге формализации требований пользователь может описывать требования в виде условий на различные атрибуты элементов интерфейса; эти условия могут строиться с использованием поддержки инструмента. Информации, собранной при автоматизации первого и второго шагов, оказывается достаточно для автоматического связывания интерфейсных функций с Web-приложением. Для шага разработки тестовых сценариев предлагаются дополнительные возможности по описанию его компонентов в терминах интерфейса Web-приложения. Последний шаг не требует дополнительной автоматизации, так как все инструменты семейства UniTesK уже предоставляют развитые средства выполнения тестов и анализа их результатов.

При использовании дополнительной инструментальной поддержки процесс разработки тестов для функционального тестирования Web-приложений изменяется и состоит из следующих шагов:

(1) создание модели Web-приложения;

(2) создание тестового сценария;

(3) выполнение тестов и анализ результатов.

Первый шаг – создание модели Web-приложения –  включает в себя определение интерфейсных функций, описание требований к ним и их связывание с Web-приложением, т.е. объединяет первые три шага технологии UniTesK. Основная задача этого шага – формализация требований к интерфейсным функциям – в отличие от второго шага технологии UniTesK может быть частично автоматизирована, а выделение интерфейсных функций и их связывание с Web-приложением происходит автоматически. Два последних шага соответствуют двум последним шагам технологии UniTesK и отличаются только уровнем автоматизации.

На первом шаге должно быть получено описание модели, состоящее из набора интерфейсных функций и описания требований к ним. Интерфейсная функция соответствует воздействию на интерфейс Web-приложения, в результате которого происходит обращение к серверу. Элементы интерфейса, влияющие на параметры этого обращения, включаются в список параметров интерфейсной функции. Результатом воздействия является обновление интерфейса, которое описывается в требованиях к интерфейсной функции. Например, для HTML-формы регистрации можно описать интерфейсную функцию, соответствующую отправке данных формы на сервер, параметрами которой являются значения полей, входящих в форму. В описание требований включается информация о значениях, для которых успешно выполняется регистрация, и описываются ограничения на состояние обновленного интерфейса.

Разбиение множества всех возможных состояний интерфейса Web-приложений на классы эквивалентности представляется в модели набором страниц. Это разбиение, которое, с одной стороны, используется при описании требований, с другой стороны, является основой для определения состояния в сценарии. По умолчанию разбиение на страницы осуществляется по адресу (URL) HTML-документа, отображаемого в Web-браузере. Однако пользователь может переопределить разбиение произвольным образом. При традиционном способе построения Web-приложения, когда для каждого URL определяется его собственный интерфейс, разбиение по умолчанию соответствует представлению пользователя о тестировании Web-приложения – пройти все страницы и проверить всю возможную функциональность на каждой из них.

Также естественным для пользователя требованием к Web-приложению является требование перехода с одной страницы на другую в результате активизации гиперссылки или нажатия на кнопку HTML-формы. Такие требования легко описываются с помощью понятия страниц. В более сложных случаях, например, для описания требования к результату работы HTML-формы поиска по некоторому критерию, требования формулируются в виде условий на атрибуты элементов интерфейса.

Автоматизация построения модели поддерживается в процессе сеанса работы с тестируемым Web-приложением. Пользователь осуществляет навигацию по страницам приложения, редактируя список интерфейсных функций и их параметров, который автоматически предлагается инструментом, и добавляет описания требований, формулируя их в виде проверки некоторых условий на атрибуты элементов интерфейса. Для формулировки проверок инструмент предоставляет возможность выделения интерфейсных элементов и задания условий на их атрибуты.

В результате этого шага инструмент создает из модели Web-приложения компоненты тестового набора UniTesK, обычно появляющиеся на первых трех шагах технологии – это спецификационные классы, описывающие интерфейсные функции, и медиаторные классы, реализующие связь между интерфейсными функциями и тестируемой системой.

В спецификационных классах для каждой интерфейсной функции создаются спецификационные методы, в которых описываются требования к поведению функций, сформулированные при работе инструмента. Для этого используются предусловия и постусловия спецификационных методов. В том случае, если средств, предоставляемых инструментом, недостаточно для описания функциональности Web-приложения, полученные спецификационные классы могут быть доработаны вручную.

В медиаторных классах описывается связь между спецификацией и тестируемой системой. Для каждого спецификационного метода задается медиаторный метод, который преобразует вызов этого спецификационного метода в соответствующее воздействие на интерфейс Web-приложения. Это преобразование осуществляется следующим образом. Для каждого параметра спецификационного метода медиатор находит соответствующий ему элемент интерфейса Web-приложения и устанавливает значение его атрибутов в соответствии со значением параметра. Затем медиатор осуществляет воздействие требуемого типа на элемент интерфейса, соответствующий данной интерфейсной функции, и ожидает реакции Web-приложения. Как правило, реакция на воздействие заключается в обращении Web-браузера к Web-серверу и получении от него нового описания интерфейса. Медиатор дожидается завершения обновления состояния интерфейса и синхронизирует состояние модели.

На втором шаге нужно получить описание тестов для Web-приложения. При создании тестов используется подход, предлагаемый технологией UniTesK. Согласно этому подходу тесты описываются в виде тестовых сценариев, в основе которых лежит алгоритм обхода графа переходов конечного автомата. Для каждого тестового сценария нужно выбрать подмножество интерфейсных функций, для тестирования которых предназначен данный сценарий. Для каждой выбранной функции нужно задать правила, по которым будут перебираться ее параметры. Кроме того, нужно задать правила идентификации состояний тестового сценария.

Для автоматизации процесса создания тестового сценария предоставляется возможность определять итерацию для параметров выбранных интерфейсных функций на основе готовых вариантов перебора. Для этого могут использоваться библиотечные итераторы и итераторы, разработанные пользователем. Данные, которые вводились в ходе сеанса работы с инструментом на первом шаге, также могут быть включены в качестве дополнительных значений для заданной итерации. Кроме того, инструмент может предложить перебор параметров, построенный на основе анализа интерфейса Web-приложения. Например, использовать для итерации значения элементов выпадающего списка или же значения, которые берутся из разных интерфейсных элементов, например, расположенных в столбце некоторой таблицы.

Информация о работе Функциональное тестирование Web-приложений на основе технологии UniTesK