Вентиляция гальванических цехов

Автор: Пользователь скрыл имя, 27 Февраля 2013 в 00:30, курсовая работа

Описание работы

Для снижения концентрации загрязняющих веществ в воздухе гальванических цехов – химических вредных веществ, абразивной пыли, паров растворителей, а также для улучшения условий работы людей, на таких производствах необходима установка приточно-вытяжной вентиляции.

Работа содержит 1 файл

проект.docx

— 456.76 Кб (Скачать)
 

Вентиляция гальванических цехов


Предельно допустимые концентрации вредных веществ (ПДК) – это предельные нормы загрязнения  воздуха в производственных помещениях, превышение которых отрицательно сказывается  на здоровье работающих там людей. Работники  гальванического производства трудятся во вредных условиях, и это является спецификой данного рабочего процесса.

Для снижения концентрации загрязняющих веществ в воздухе  гальванических цехов – химических вредных веществ, абразивной пыли, паров  растворителей, а также для улучшения  условий работы людей, на таких производствах  необходима установка приточно-вытяжной вентиляции. Это позволит не превышать  допустимые нормы концентрации загрязняющих веществ в гальванических цехах  вблизи оборудования.

 

Если в помещении  отсутствует оборудованная система  вентиляции, то вентиляция воздуха  осуществляется естественным путем. Происходит это через раскрытые окна, благодаря  перепаду температур внутри и снаружи  помещения, через различные щели, а также, частично, через стены, особенно, если они изготовлены из пористого  материала. Такое проветривание  является естественной вентиляцией  и по производительности и эффективности  существенно уступает принудительной. Вентиляция, происходящая самопроизвольно, не дает возможности управлять скоростью  движения воздушных масс и их направлением

.

Принудительная  вентиляция

При принудительной вентиляции происходит непрерывный  круговорот воздушных масс – загрязненный воздух забирается из помещения, а свежий подается в него посредством использования  вентилятора с силовым приводом.

При принудительной промышленной вентиляции воздух с отрегулированной интенсивностью отсасывается именно из мест загрязнения вредными примесями, а свежий равномерно поступает в  помещение.

Задача, стоящая  перед специалистами при монтаже  вентиляционной системы для гальванического  цеха, заключается в соблюдении проектного плана и значений всех параметров, рассчитанных для отдельных узлов  вентиляции и для системы в  целом.

Компания «Manyplast» предоставляет полный спектр услуг по проектированию, изготовлению, установке и обслуживанию вентиляционных систем из полипропилена для гальванических цехов. Большой опыт, квалифицированные специалисты, качественное оборудование и демократичные цены выделяют работу нашей компании на рынке.

Правила расчета  мощности вентиляционной системы

Воздух, проходящий по каналам и трубам вентиляционной системы, отличающихся по диаметру, имеющих повороты и ответвления, двигается по трубопроводу с определенной скоростью, которая определяет, какое сопротивление испытывает воздушный поток, перемещающийся по каналам. Для движения с нужной скоростью объема воздуха, обладающего определенной массой, необходимо обеспечить напор воздушной струи установленной мощности, с которым воздух подается в вентиляционную систему. Для создания такого давления применяются мощные вентиляторы (принудительная вентиляция) или используется формирование напора воздуха за счет разницы температур на различных участках трубопровода.

Двигаясь по каналам  вентиляции, воздушная струя постепенно теряет мощность из-за потерь энергии  при похождении участков вентиляционной системы. Поэтому очень важно  грамотно рассчитать все параметры  проектируемой вентиляционной системы, чтобы смонтированное оборудование работало эффективно и без сбоев, осуществляя качественную очистку  воздуха в цехе.

Для проведения расчетов необходимо учитывать размер всей длины  вентиляционного трубопровода, его  ответвлений и отдельных ветвей, чтобы в каждой его точке величина напора соответствовала заданным параметрам скорости воздушной струи и объему воздуха, подаваемому в вентиляцию. Если при монтаже системы или  при ее реконструкции допущены нарушения, и фактические значения отличаются от расчетных, вентиляция будет работать неэффективно, с пониженной мощностью и в случайных режимах. Как результат – очистка воздуха в помещении будет производиться ненадлежащим образом, что может сказаться на здоровье, находящихся там людей.

Приточно-вытяжная система вентиляции на гальваническом производстве, зачастую включает в  себя и вентиляцию соседних с гальваническим цехом помещений, и образует большую  единую систему, очищающую воздух на обширной территории.

Категорически недопустимо, без проведения дополнительных расчетов, подсоединение, к установленной  и действующей системе вентиляции, дополнительных потребителей, не учтенных при проектировании системы. Эти  действия по самостоятельной модификации  элементов воздуховода, и изменение  его нагрузки приведет к неправильному  функционированию вентиляции, и снизит эффективность очистки воздуха  в помещениях.

Проектирование, расчет технических показателей, монтаж вентиляции, необходимую доработку системы  можно доверить только профессионалам, имеющим опыт и соответствующую  квалификацию. Только в таком случае, можно быть уверенными за здоровье людей, работающих на вредных производствах, в цехах, требующих качественную очистку воздуха, таких как гальваническое производство.

Виды вентиляции для гальванических цехов

Все системы вентиляции, которые устанавливаются в гальванических цехах можно разделить на несколько  видов:

вытяжные шкафы; вытяжные зонты или колпаки; отсасывающие решетки; бортовые отсосы.

Вытяжные  шкафы обычно устанавливаются в местах проведения работ, связанных с травлением цветных металлов. Оборудование при этом располагается внутри вытяжного шкафа, который эффективно защищает помещение от вредных веществ, выделяемых на этом этапе производства. К недостаткам данного вида вентиляции можно отнести затрудненность доступа к работающему оборудованию и незащищенность от вредных выделений человека, работающего непосредственно над оборудованием.

Вытяжные  зонты и колпаки просты в изготовлении и монтируются прямо над оборудованием. Они устанавливаются при ведении работ в наливных колоколах с щелочными газовыделяющими электролитами, а также при освобождении колоколов от наростов обработкой в кислоте. При работе вытяжного зонта объем воздуха, засасываемого в систему вентиляции, очень велик, за счет затягивания с боковых сторон воздуха, который не требует очистки, а это снижает производительность всего процесса вентиляции.

Отсасывающие решетки  устанавливаются сбоку от оборудования с нерабочей стороны. Для гальванических цехов применяются редко, хотя хорошо улавливают легкие газы и частицы  водяного пара. К недостаткам этого  вида вентиляции относится значительный расход воздуха при работе.

Бортовые  отсосы монтируются на уровне верхнего края гальванической ванны. При работе с установками, оборудованными бортовыми отсосами, рабочий находится вне зоны выделения вредных веществ. Отсосы эффективно работают при удалении тяжелых и легких газов, а также брызг, неизбежных при гальваническом производственном процессе.

Бортовые отсосы – универсальное оборудование для гальваники

Бортовые отсосы являются наиболее универсальным вентиляционным оборудованием, которое устанавливается  в гальванических цехах. Они очень  удобны в эксплуатации и установке, эффективны при работе и высоко экономичны. В основе работы бортового отсоса лежит принцип сбивания выскакивающих из раствора капель с помощью сильной горизонтальной струи воздуха (факела), образованной над уровнем электролитного раствора. Факел с огромной скоростью втягивается в узкую щель отсоса, и заставляет капли отскакивать от этой сильной струи и падать обратно в гальваническую ванну. Остальная часть капель раствора, и, образующиеся в процессе работы вредные газы, удаляются через заборную щель вентиляционного отсоса. Стандартный вентиляционный бортовой отсос отходит от края рабочей ванны в сторону работника не более чем на 5-10см, и при правильной его установке, ширина рабочей зоны ванны увеличивается незначительно. Увеличение габаритов вертикального участка вентиляционного отсоса при переходе к воздуховоду происходит в направлении стенки оборудования, что практически не влияет на ширину ванны. Воздуховод отсоса расположен очень низко и не препятствует доступу к гальванической установке.

Горизонтальная  струя воздуха (факел) бортового  отсоса слабеет по мере удаления от заборной щели, это определяет оптимальную  ширину гальванической ванны – не больше 600мм. На ваннах большей ширины рекомендуется устанавливать отсосы с двух противоположных краев  ванны. Нет никакой необходимости  устраивать отсосы более чем с  двух сторон ванны – вентиляция при этом будет только хуже, так  как в местах пересечения факелов  образуются воздушные завихрения, которые  мешают вентиляции воздуха над раствором  в ванне.

Располагается заборная щель бортового отсоса вплотную к  самому краю оборудования, ниже, чем  катодные и анодные штаги, которые  не должны забрызгиваться раствором. В  зоне прохождения воздушной струи  могут располагаться только анодные  подвесные крюки и крюки подвесочных  приспособлений. Для того чтобы не препятствовать струе факела, анодные  пластины должны быть ниже заборной щели.

На некоторых  гальванических производствах применяются  гальванические ванны с откидными  крышками, а также используются, так называемые, поплавки. Такие  приспособления облегчают работу бортовому  отсосу, уменьшая поверхность, с которой  забирается загрязненный объем воздуха, правда, обслуживание ванн при этом несколько затрудняется.

Раньше широко использовались опрокинутые бортовые вентиляционные отсосы, у которых заборное отверстие  находилось прямо над уровнем  электролита на конце рукава, перекинутого через край электролизной ванны.

Конструкция опрокинутого отсоса представляет собой воздуховод толщиной по наружному размеру 100мм, который перегибается через край ванны и доходит до уровня раствора. Из-за необходимости при использовании  опрокинутых отсосов уменьшать  расстояние между электродами, а  также из-за возникновения больших  неудобств для гальваника, работающего с этим оборудованием, опрокинутые отсосы постепенно выводятся из производства.

Правильный выбор  конструкции бортовых отсосов может  оказать огромное влияние не только на эффективность работы вентиляционной системы в целом, но и сказаться  на удобстве работы с гальваническим оборудованием, а в конечном итоге  повлиять на производительность труда  работников «гальваники». Зная об этом, специалисты компании «Manyplast», с учетом всех законов эргономики и пожеланий сотрудников гальванических цехов, готовы выполнить полный комплекс работ по проектированию и установке вентиляционного оборудования для гальванического цеха.


 

 

Курсовая работа: Система вентиляции гальванического цеха предприятия ОАО "Коммунар"

Название: Система вентиляции гальванического цеха предприятия ОАО "Коммунар"

Раздел: Промышленность, производство

Содержание

Введение

Глава 1. Методы расчёта

1.1 Теоретические основы  расчёта вредных выделений

1.2 Вентиляционная система

Глава 2. Расчёт вентиляционной системы гальванического цеха

2.1 Расчёт системы вентиляции  гальванического цеха

2.2 Подбор вентилятора  и электродвигателя

Вывод

Список использованной литературы

 

Введение

Защита атмосферного воздуха  и формирование микроклиматических характеристик в пределах рекомендованных  показателей ПДК является одной  из важнейших задач при проектировании и реконструкции систем безопасности промышленных объектов.

Подавляющее большинство  промышленных предприятий в настоящее  время работают в режиме усиленного производства во многом зависящем от сезонности работ и требований заказчика. Минувшие экономические реформы поставили подавляющее большинство предприятий в условия выживания и требовали максимального режима экономии в том числе на среда защитном и очистном оборудовании. В некоторых случаях очевидна картина физического износа материальной части очистного оборудования, в другом использование кустарных самодельных конструкции, крайне слабо соответствующие современным требованиям предъявляемых к качеству газовоздушной смеси. При этом происходит расширение производства вопреки рекомендуемым ГОСТами нормативами. Настоящая ситуации характерна и для рассматриваемого нами производственного объекта – ОАО «Коммунар». В настоящее время гальванический цех был увеличен, что привело к необходимости реконструкции вентиляционной системы данного промышленного предприятия.

Инженерные системы, удаляющие  от технологического оборудования отходы производства в виде газов и пылевоздушных  смесей, подающие их к газоочистным и пылеулавливающим устройствам  и осуществляющие их очистку (обезвреживание), являются газоочистными и пылеулавливающими  сооружениями в составе промышленных предприятий.

Проектирование и эксплуатация пылеулавливающих сооружений или аспирационных  систем в деревообрабатывающих производствах  сводится к решению задач эффективного и надежного обеспыливания воздуха в рабочей зоне производственных помещений и охраны атмосферного воздуха от загрязнения пылевыми выбросами с минимальными капитальными и эксплуатационными затратами.

Актуальность работы.

Подавляющее большинство  гальванических цехов, как основного, так и вспомогательного назначения сегодня испытывают недостачу в  системах очистки атмосферного воздуха  рабочей зоны, а также выбрасываемой  газовоздушной смеси, во многих случаях используется оборудование не предназначенное для использования в деревообработке или самостоятельно собранная система, что создает риск аварийной ситуации, снижает эффективность очистки и способствует износу рабочих машин.

При всей комплексности решения  представленных проблем, очевидным  остается, то что в настоящее время единственно возможным выходом из сложившейся ситуации является совершенствование системы очистки отработанной газовоздушной смеси. Возникает необходимость в создании недорогой, не сложной конструкции вентиляционной системы. Основными требованиями к которой являются: надежность, универсальность (использование стандартных узлов и элементов конструкции), простота.

Исходя из выше изложенного, мы определили цель и задачи настоящей  работы.

Цель – спроектировать и рассчитать основные конструкционные узлы системы вентиляции гальванического цеха предприятия ОАО «Коммунар».

Задачи:

- подобрать и рассчитать  воздухоочистное оборудование;

- в соответствии с полученными  данными подобрать вентилятор  и электродвигатель.

 

Глава 1. Методы расчёта  

 

1.1 Теоретические  основы расчета вредных выделений

воздухообмен вентиляционный узел электродвигатель

В производственных помещениях воздух загрязняется различными посторонними примесями: вредными веществами, пылью, избыточным теплом. Эти выделения  создают неблагоприятные условия  для работающих и могут стать причиной заболевания.

Одним из способов поддержания  в помещениях чистого воздуха, отвечающего  санитарно-гигиеническим требованиям, являются общеобменная вентиляция.

Необходимый воздухообмен в  помещении определяется по следующим  факторам: числу людей в помещении, выделению вредных веществ, избыточному  теплу. Для получения достоверных  данных при определении необходимого воздухообмена нужно учитывать  все эти параметры и за расчетную  величину принимать наибольшее значение, по которому подбирается вентиляционная установка [5].

Необходимый воздухообмен в  помещении в зависимости от числа  находящихся в нем людей L, м3/ч, определяется по формуле 

 

L = n · L´

где L – необходимый воздухообмен в помещении м3/ч;

п – число людей в помещении;

V – расход воздуха на 1 человека в зависимости от  объема (V) помещения, м3/ч.

При V – менее 20 мна одного человека L′ принимается равным 30 м3/ч. При V более 20 мне менее 20 м3/ч, а при отсутствии естественной вентиляции V принимается равным 60 м3/ч. Необходимый воздухообмен по выделению вредных веществ L, м3/ч, определяется по формуле

где G – количество вредных  веществ, выделяемых в помещении, мг/ч;

qв,-qпр концентрация вредных веществ в вытяжном и приточном воздухе соответственно, мг/м3.

Концентрация вредных  веществ в приточном воздухе должна быть минимальной и не должна превышать 30% от предельно допустимой концентрации (ПДК) в воздухе рабочей зоны. Если в помещении одновременно выделяется несколько вредных веществ однонаправленного действия, их концентрация q, мг/мопределяется из выражения [14]

Величину G можно определить по эмпирической формуле

где µ – коэффициент  неорганизованного воздухообмена  в помещении, обычно применяемый  – 2; В – объем помещения, м3; К – средне взвешиваемая концентрация вредных веществ в помещении, мг/м3.

Необходимый воздухообмен по избыткам тепла L, м3/ч, определяется по формуле

где Q – избыточное тепло, выделяемое в помещении, Дж/ч;

C – удельная весовая  теплоемкость воздуха, равная 1004 Дж/кг;

ρ – плотность воздуха, кг/м3;

tпр,-tух температура приточного, температура уходящего из помещения воздуха соответственно, °С. Температура воздуха, удаляемого из помещения tух,°С определяется по эмпирической формуле

где tpз – температура воздуха в рабочей зоне, °С,

∆t – градиент температуры по высоте помещения (от 1 до 5 °С); Н – расстояние от пола до центра вытяжных проемов, м;

2 – высота рабочей зоны, м.

Количество тепла, выделяемого  человеком Q людей, Дж, зависит от его физической нагрузки и от температуры воздуха в помещении. Количество тепла, выделяемого взрослым мужчиной, можно определить из таблицы 1.

Таблица 1. – Количество тепла, выделяемого взрослым мужчиной

Физические нагрузки

Количества тепла, Дж, выделяемого  в помещении при температуре  воздуха, °С

 

10

15

20

25

30

35

В покое

586040

523250

418600

334880

334880

334880

При легкой работе

648830

565110

544180

523250

523250

523250

При работе средней тяжести

774410

753480

732550

711620

711620

711620

При тяжелой работе

1046500

1046500

1046500

1046500

1046500

1046500


Количество тепла, выделяемого  от станков Q станков, Дж, определяется по формуле

где 860 - тепловой эквивалент;

Nφ – номинальная мощность, расходуемая станками, кВт;

– коэффициент использования мощности  (обычно принимают  от 0,7 до 0,9);

– коэффициент загрузки (обычно принимают  от 0,5 до 0,8);

3 – коэффициент одновременности работы (обычно принимают  от 0,5 до 1,0);

4 – коэффициент ассимиляции тепла воздухом, учитывающий, какая частота тепла затрачиваемой механической энергией передается в виде тепла воздуха помещения (колеблется от 0,1 до 1);

Для определения тепловыделений в механических и механосборочных  цехах ориентировочно  + 0,25.

Количество тепла, выделяемого  в помещении нагретым материалом Qн.матер., Дж, определяется по формуле 

Q = Gн · С (tнач – tк),

где Gн – вес материала, кг;

C – средняя теплоемкость  материала, Дж (кирпич – 877,8 Дж, железо – 480,6 Дж, чугун – 418,6 Дж);

tнач  –  начальная температура, °С;

tк – конечная температура, °С.

Избытки тепла в помещении  от источников света Qист.св., Дж, можно определить из выражения

где N∑ – суммарная потребляемая мощность освещения, кВт.

Практически принимается, что  вся мощность источника света  переходит в тепло. В теплый период года (при наружной температуре более  плюс 10°С) следует учитывать солнечную  радиацию. Количество тепла, поступающего от солнечной радиации Qсолн.рад., Дж, определяется по формуле 

Qсолн.рад. = Fост · Kост · qост,

где Fост – поверхность остекления, м2;

Кост – коэффициент, зависящий от характеристики остекления (таблица 2);

qост – солнечная радиация через 1 мповерхности остекления в зависимости от ориентации по сторонам света, Дж (таблица 3).

Таблица 2. – Значение коэффициента Кост

Характеристика остекления

Значение коэффициента Кост

Двойное остекление в одной  раме

1,15

Одинарное остекление

1,45

Обычное загрязнение стекол

0,8

Сильное загрязнение стекол

0,7

Побелка стекол

0,6

Остекление матовыми стеклами

0,4

Внешнее зашторивание окон

0,25


Солнечная радиация через  стены не учитывается ввиду ее незначительности.

Таблица 3. – Значение коэффициента qост

Расчетная географическая широта, с.ш

Истинное солнечное время  года

Коэффициент

qост, Дж

 

до полудня

после полудня

С

СВ

В

ЮВ

Ю

ЮЗ

3

СЗ

52

5-6

18-19

196742

246974

263718

188370

113022

100464

100464

100464

 

6-7

17-18

246974

351624

426972

326508

213486

154882

159068

159068

 

7-8

16-17

255346

380926

264646

397670

272090

196742

192556

192556

 

8-9

15-16

242788

347438

443716

410228

305578

226044

205114

209300

 

9-10

14-15

226044

284648

359996

397670

313950

242788

213486

217672

 

10-11

13-14

217672

246974

301392

351624

624322

259532

217672

221858

 

11-12

12-13

213486

234416

259532

309764

326508

23441622

234416

226044


Примечание –  Данные приведены для одинарного остекления со стеклом толщиной от 2,5 до 3,5 мм.

Тепловыделения от нагретой поверхности воды или других жидкостей  Qпов.воды, Дж, определяются по формуле  

Qпов.воды = (4,9 + 3,5 · V)(t– tвозд) · F

где V – скорость воздуха  над водной поверхностью, м/с; t– температура воды, °С;

tвозд – температура воздуха в помещении, °С;

F – площадь водной поверхности,  м2.

Определяем суммарное  избыточное тепло, поступающее в  помещение Qизб, Дж 

Qизб = Qлюдей + Qн.матер. + Qстанков + Qсолн.рад. + Qист.св. + Qпов.воды

Избыточное тепло с  учетом тепловых потерь Qизб, Дж, определяют по формуле 

Qизб = Qпост – Qт.п.,

где Qпост – тепло, поступившее в помещение, Дж;

Qтп – тепловые потери, Дж.

Тепловые потери можно  Qтп, Дж, определить по формуле 

Qт.п. = K · F (tвн – tн),

где К – коэффициент теплопередачи (для кирпичной стены К от 3348 до 3767 Дж, для бетонной К от 5441 до 6279 Дж);

F – площадь поверхности  ограждения, м2;

tвн,-tн внутренняя и наружная температура воздуха в помещении соответственно, °С.

Расчетные параметры наружного  воздуха (СНиП 2.04.05-91) для Курска составляют, в теплый период 22,9 °С, в холодный – 5 °С.

Подставив Qизб в формулу, найдем необходимый воздухообмен в помещении. Определив необходимый воздухообмен по фактору вредных веществ, количеству людей в помещении, избыточному теплу, принимаем за расчетную величину наибольшее количество.

Используя расчетное значение, по аэродинамическим характеристикам  подбирается вентиляционная установка [20].

Для этого устанавливают  точку на, оси абсцисс графика  требуемого расхода воздуха. Из неё  восстанавливают перпендикуляр  до пересечения с заданным давлением  и тем самым устанавливают  частоту вращения вентилятора и  его КПД.

Мощность, потребления вентилятора N, определяется из выражения

где Q – производительность вентилятора, м3/ч;

Р – давление, создаваемое вентилятором, кгс/м ;

102 – коэффициент перевода, кг·м/с в кВт;

ηв – к.п.д. вентилятора;

ηп – к.п.д. передачи (при размещении вентилятора на одном валу с двигателем

ηп = 1, для клиноременной передачи 0,95, для плоскоременной – 0,91

Установочную мощность электродвигателя Nуст, – определяют по формуле

,

где α – коэффициент  запаса мощности, принимается равным 1,1-1,5.

1.2 Вентиляционная  система

Как уже говорилось, требуемые (нормируемые) параметры воздуха  в помещениях при использовании  общеобменной вентиляции поддерживаются путем нагнетания в помещениях чистого воздуха в необходимом объеме, с необходимой температурой и влажностью, и удалением воздуха, не соответствующего нормативным требованиям. В соответствии с этим системы общеобменной вентиляции должны включать в себя устройства для забора наружного воздуха, его обработки, транспортировки и распределения по помещениям, а также для удаления отработавшего воздуха. Общая схема общеобменных вентиляционных систем и расположение в них оборудования показаны на рисунке 1.

В конкретных случаях вентиляционные установки могут не иметь всего  комплекта оборудования, показанного  на схеме. Так, очистка вытяжного  воздуха перед его выбрасыванием  в атмосферу производится лишь в  случаях его загрязнения выше норм, допустимых для окружающей среды, и т.д.

Рисунок 1. – Общеобменная вентиляционная система:

1 – воздухоприемные устройства; 2 – фильтр противопыльный;

3 – оборудование для  тепловлажностной обработки воздуха (калориферы, кондиционеры, воздухоохладители и т.п.);

4 – вентиляторы; 5 – шумоглушители; 6 – воздуховоды;

7 – регулировочные клапаны; 8 – приточные отверстия; 9 – вытяжные  отверстия; 10 – оборудование для  очистки вытяжного воздуха; 11 –  воздуховыбросное устройство; 12 – линия рециркуляции. ПВК и ВВК – приточная и вытяжная вентиляционные камеры.

Глава 2. Расчет вентиляционной системы гальванического цеха 

2.1 Расчет системы  вентиляции гальванического цеха

В гальванических цехах производятся антикоррозийно-декоративные покрытия черных металлов цветными. Поверхность покрываемых защитным слоем изделий и деталей предварительно очищается от ржавчины, окалины и прочих загрязнений.

Очистка производится в пескоструйных  и дробеметных камерах, на обдирочно-шлифовальных станках с помощью корундовых и карборундовых кругов, а также во вращающихся галтовочных барабанах или колоколах, в которые загружаются очищаемые изделия, песок или наждак. Более тонкая очистка поверхности металла достигается на полировочных станках с войлочными, фетровыми и бязевыми кругами, покрываемыми специальной пастой, а также на крацовочных станках, оборудованных щетками из волоса или мягкой проволоки.

Кроме перечисленных способов очистки поверхности металла  от ржавчины, окалины и загрязнений, применяются обезжиривание в  органических растворителях (бензине, керосине и т. п.) и травление металла  в водных растворах кислот, солей  и щелочей. Защитно-декоративное покрытие металлоизделий производится гальваническим и другими способами. После травления и покрытия изделия опускаются в ванны холодной и горячей промывки, затем сушатся непосредственно в цехе или в специальных шкафах. При сухих способах очистки поверхностей металлов выделяется органическая или неорганическая пыль. В процессах обезжиривания, травления и покрытия выделяются пары растворителей, кислот, воды и газы.

Наиболее совершенным  способом локализации вредностей является укрытие, но устройство его не всегда возможно по условиям технологического процесса. Чаще всего применяются  бортовые отсосы. Бортовые отсосы делятся  на сплошные и секционные. Сплошные бортовые отсосы могут устраиваться при длине ванн до 1200 мм; при большей длине применяются секционные отсосы. Самостоятельные вытяжные системы должны проектироваться для пескоструйных и дробометных камер и полировальных станков, оборудованных войлочными или матерчатыми кругами, от укрытий над местами обезжиривания бензином, а также над местами обезжиривания хлорированными углеродами. Цианистые ванны можно объединять одной вытяжной установкой только со щелочными ваннами.

При трассировке вытяжной вентиляции необходимо учитывать, чтобы  ванны с более токсичными вредностями  находились ближе к вентилятору. Прокладка воздуховодов в травильных и гальванических цехах может  быть верхняя (под потолком помещения) и нижняя (в подпольных каналах  или подвале). При подпольной прокладке  каналы устраиваются из кислотоупорного  бетона или кирпича, оштукатуриваются кислотоупорным цементом снаружи и  изнутри и покрываются каменноугольной  смолой.

Уклон каналов делается в  сторону вентилятора с устройством  перед ним приямка для стока  конденсата. Верхняя прокладка осуществляется стальными воздуховодами с уклоном  в сторону ванн. В нижней части  кожуха вентилятора вытяжных систем травильных и гальванических цехов  должен быть предусмотрен спуск конденсата.

С целью противокоррозийной защиты стальные вытяжные воздуховоды и бортовые отсосы покрываются с обеих сторон асфальтовым или перхлорвиниловым лаком. Приточные воздуховоды снаружи окрашиваются асфальтовым лаком или масляной краской за 2 раза, а изнутри – олифой. Если вентиляторы, обслуживающие вытяжные системы, применяются не в кислотоупорном исполнении, а обычные, то их изнутри также необходимо тщательно покрывать асфальтовым лаком.

Выброс испорченного воздуха  должен производиться на высоте не менее 5 м от конька крыши. Удаляемый  воздух необходимо подвергать очистке. Воздух, подвергается двухступенчатой  очистке.

Очистка воздуха от дробеметных и пескоструйных камер может быть одноступенчатая в матерчатых рукавных фильтрах с предварительными камерами или циклонами и двухступенчатая – сначала в сухом циклоне, а затем в циклоне с орошаемой пленкой.

Приточный воздух в пескоструйные, шлифовально-полировальные, травильные и гальванические отделения подается в количестве 80–90% от объема вытяжки. Остальные 20–10% должны поступать в  примыкающие коридоры. В отделениях с пыльными процессами выпуск воздуха  осуществляется в верхней зоне помещений со скоростью 2–3 м/сек; в травильных и гальванических цехах желательно подавать до 40% воздуха в рабочую, а остальную часть в верхнюю зону. Скорость выпуска воздуха в рабочую зону принимается до 1 м/сек.

Рисунок 2. – План системы  вентиляции от гальванических ванн

1 – приточная система  №I; 2 – конденсатотводчик №3; 3 – опуски;

4 – крепление воздуховодов; 5 – ванна для обезжиривания: 6 – ванна для хромирования; 7 –  ванна для латунирования; 8 – масляная  ванна;

9 – ванна для лужения; 10 – ванна для омеднения; 11 –  вытяжная система №2 (диаметр  шахты d =1025 мм)

В отделениях обезжиривания  органическими растворителями воздух подается в рабочую зону. В травильных и гальванических цехах с процессами, сопровождающимися значительным выделением водорода, во избежание образования  гремучей смеси следует предусматривать  проветривание верхней зоны путем  устройства аварийной вытяжной системы.

При проектировании систем и  выборе оборудования для гальванических цехов необходимо соблюдать правила  пожаро- и взрывобезопасности. Так, для вытяжных систем, удаляющих пары растворителей или газы от электролитических ванн, вентиляторы и электродвигатели подбираются во взрывобезопасном исполнении, а воздуховоды заземляются.

На рисунках 2 и 3 изображена в плане и разрезе система  вытяжной вентиляции от гальванических ванн. На рисунке 4 показана аксонометрическая  схема. Характеристика ванн приведена  в таблице 4.

От ванн для промывки вытяжка  не устраивается, поэтому она на плане не показана.

Общий объем вытяжки 22 000 м3/час; кратность воздухообмена 9. Отсосы от ванн – двухбортовые секционные (рисунок 13). Данные для подбора отсосов имеются в справочнике [25]. Бортовые отсосы изготавливаются на сварке из стали толщиной 3–5 мм. Все элементы системы вытяжной вентиляции изнутри покрываются кислотоупорным лаком.

Таблица 4

Наименование

Размеры в м

Количество

Температура воды в град.

Ванна обезжиривания

1,5×0,8

2

80

// хромирования

1×0,8

2

50

// латунирования

1,5×0,8

1

18

// омеднения

1,5×0,8

1

18

// лужения

1×0,8

1

80

// масла

1×0,8

1

120


На рисунке приведены  план пескоструйного отделения и  аксонометрическая схема вытяжки  от пескоструйных аппаратов. Аппараты представляют собой закрытые кабины, обслуживаемые снаружи через  отверстия, сделанные в стенах.

Если рабочий находится  вне камеры, то количество отсасываемого  из кабины воздуха определяется из расчета 1800 м3/час на 1 мгоризонтального сечения кабины. В том же случае, когда рабочий находится внутри камеры, объем отсасываемого воздуха зависит от диаметра сопла (таблица 12). Кроме того, в этом случае предусматривается подача чистого воздуха в скафандр рабочего в количестве 30 м3/час.

Рисунок 3. – Система вентиляции (в разрезе) от гальванических ванн

1 – вытяжная система  №1; 2 – опуски (d=375 мм) с дроссель-клапанами; 3 – двусторонние бортовые отсосы; 4 – насадки;

5 – дроссель-клапаны; 6 – ванна для хромирования; 7 – ванна для латунирования; 8 – ванна для обезжиривания.

Рисунок 4. – Расчетная  схема вентиляции от гальванических ванн

1 – бортовой отсос от  ванны для латунирования (щель 50х500 мм);

2 – то же, от ванны  для хромирования; 3 – то же, от  ванны для обезжиривания; 4 – то  же, от ванны для омеднения; 5 –  то же, от ванны для лужения; 6 – то же, от масляной ванны; 7 – радиальный вентилятор В-ЦП7-40-5; Д.К. – дроссельный клапан.

   

Рисунок 5. – Двухбортовые секционные отсосы

1 – щель высотой 50 мм; 2 – дроссельный клапан (150x150 мм)

Рисунок 6. – Вентиляция пескоструйного отделения

а – эскизный план; б – аксонометрическая схема; в – вариант двухступенчатой очистки воздуха от пыли; 1, 2 – пескоструйные камеры; 3 – матерчатый рукавный фильтр; 4 – центробежный вентилятор; 5 – выкидной клапан; 6 – циклон; 7 – циклон с водяной пленкой; 8 – пылесборник; 9 – шламоотстойиик.

Таблица 5

Наименование оборудования

Площадь в м2

Объем вытяжки в м2/час

Пескоструйная камера

0,7

0,7 · 1800 = 1250

То же

0,7

0,7 · 1800 = 1250

То же, с обслуживанием  изнутри (диаметр сопла 6 мм)

-

6000

Всего

 

8500


Очистка воздуха от пыли на рисунке 14 приведена в двух возможных  вариантах: одноступенчатая в рукавных самоочищающихся фильтрах марки  МФУ-48 и двухступенчатая с циклоном конструкции ЛИОТ №6 в качестве первой ступени и циклоном №5 с водяной  пленкой в качестве второй ступени.

Установки для очистки  воздуха от пыли в обоих вариантах  работают на всасывание.

Циклон (рисунок 7) представляет собой инерционный пылеуловитель, в котором выделение частиц из воздушной (газовой) среды происходит в основном по воздействием центробежной силы, возникающей при вращении воздушного потока в корпусе аппарата.

Запыленный воздух входит в циклон через тангенциальный патрубок и, приобретая вращательное движение, опускается винтообразно вниз вдоль  внутренних стенок цилиндра и конуса. Небольшая часть этого потока, в котором сконцентрированы пылевые  частицы, движется в непосредственной близости от стенок циклона и поступает  через пылеотводящее отверстие в пылесборный бункер, где происходит осаждение и накопление пылевых частиц. В центральной зоне циклона воздушный поток, освобожденный от пыли, поднимается винтообразно вверх и удаляется через выхлопную трубу наружу. Вследствие вращательного движения воздушного потока в центральной зоне циклона (в конусе, выхлопной трубе и пылесборном бункере) наблюдается пониженное давление.

Разрежение в пылесборных бункерах может наблюдаться и в циклонах, устанавливаемых на нагнетании (после вентилятора). Так, в центре дна бункера одиночного циклона, устанавливаемого на выхлопе нагнетающего воздуховода, это разрежение по абсолютной величине близко к значению скоростного давления на входе в циклон.

Пылесборные бункеры являются неотъемлемой частью циклонов как при одиночной, так и при групповой их установке.

В выхлопной трубе циклона  происходит интенсивное вращение воздушного потока, которое необходимо учитывать  при проектировании, как одиночных, так и групповых установок  циклонов. При установке одиночных  циклонов на нагнетании (после вентилятора) вывод очищенного воздуха в атмосферу  может быть осуществлен непосредственно  из выхлопной трубы вверх через  шахту.

Диаметр выхлопной шахты  следует принимать по диаметру выхлопной  трубы циклона для избегания  резкого увеличения гидравлических потерь.

Рисунок 7. – Схема работы циклона ЛИОТ

1 – входной патрубок; 2 – корпус циклона; 3 – конус;

4– пылеотводяпшй патрубок; 5 – пылеотводящее отверстие;

6 – пылесборный бункер; 7 – пылеспускной патрубок;

8 – клапан пылевого  затвора; 9 – рычаг клапана; 10 –  выхлопная труба,

11 – улитка; 12 – выхлопной  патрубок.

При установке циклонов на всасывании (до вентилятора) следует  применять улитку, помещаемую на выхлопной  трубе с целью выпрямления  воздушного потока и использования  скоростного давления. Установку  улитки можно рекомендовать и  в тех случаях, когда после  циклона, стоящего на нагнетании, имеется  длинный участок воздуховода  до места выброса воздуха в  атмосферу [18-21].

Основные размеры и  относительные характеристики выбранного типа циклона приведены в таблице.

Циклоны ЛИОТ могут быть рекомендованы  в тех случаях, когда имеется  опасность нарастания пыли в конусе циклона или когда нельзя осуществить  герметизацию пылесборного бункера.

Гидравлическое сопротивление   циклонов определяют по формуле

кгс/м2

Коэффициенты гидравлических сопротивлений для различных  типов циклонов приведены в таблица 6.

Таблица 6

Тип циклона

Без улитки

С улиткой на выхлопной  трубе

ЦН-11

6,1

250

5,2

210

ЦН-15

7,8

160

6,7

140

ЦН-15у

8,2

170

5,7

160

ЦН-24

10,9

80

12,5

90

СИОТ

6,0

-

4,2

-

ВЦНИИОТ

10,5

-

10,4

-

ЛИОТ

4,2

460

3,7

411

СДК-ЦН-33

20,3

600

31,3

920

СК-ЦН-34

24,9

1270

30,3

1540


В циклоне без улитки величина гидравлических сопротивлений  в формуле принята равной полному давлению на входе в циклон. В циклонах с улиткой гидравлическое сопротивление представляет собой разность полных давлений. Скоростное давление воздушного потока на выходе из улитки не следует относить к гидравлическим потерям.

Скорость воздуха в  циклоне (или воздушная нагрузка циклона) для принятого значения гидравлических сопротивлений вычисляется  по формулам:

Скорость воздуха в  циклоне или воздушная нагрузка в циклоне для принятого значения гидравлического сопротивления   вычисляется по формулам.

Пропускная способность (расход воздуха) циклона в зависимости  от скорости воздуха во входном отверстии  Vвх или в сечении корпуса V0, гидравлических сопротивлений  Р и размера циклона определяется по формулам:

 м3

 м3

Номограммы для определения  пропускной способности циклонов в  зависимости от их размеров и гидравлических сопротивлений при стандартных  условиях воздушной среды (t = 20°С; Р = 780 мм. рт. ст) приведена ниже.

При запыленном воздушном  потоке коэффициенты гидравлического  сопротивления циклонов меньше, чем  при незапыленном.

Необходимо иметь следующие  данные о пыли:

- дисперсный состав пыли,

- плотность материала  пылевых частиц, г/см3.

Дисперсный состав пыли, представляемый обычно в виде таблицы, в которой  указаны массы отдельных ее фракций  , следует пересчитать на массы D, имеющих размер меньше  . По этим значениям D следует на логарифмически вероятностной координатной сетке построить кривую распределения частиц пыли, определить диаметры частиц   и   вычислить величину  .

При липких пылях, а также пылях, склонных к образованию агрегатов, следует рекомендовать применение методов, не требующих предварительного осаждения пыли и вторичного ее диспергирования. В таких случаях целесообразно применить метод струйных сепараторов-импакторов.

В тех случаях, когда дисперсный состав пыли задан в виде фракций  по числу частиц, их надо пересчитать  на фракции по массе частиц, пользуясь  следующей формулой (таблица 7):

Где,   – сумма произведений числа частиц n на куб среднего диаметра частиц, начиная от первой / i=1 / до последней / i=к /фракции.

Фракционный состав пыли, выносимой  из циклона, определяют по формуле

где,  D– фракция пыли по массе частиц, уносимых с воздухом, уходящим из циклона.

Сумма масс всех фракций   вычисленных по формуле, должна составить 100%. Если, вследствие приближенности определения значений  , эта сумма не составит 100%, то в величины   вносятся соответствующие поправки.

Величины фракционной (рисунки 16 и 17) степени очистки   находятся из вспомогательного графика, который строится на логарифмически вероятностной координатной сетке в виде прямой линии по двум точкам, имеющим следующие координаты:

 при   и   при 

Где,   – диаметр частиц, улавливаемых в циклоне на 50%

Величины   находятся из вспомогательного графика по соответствующим значениям среднего диаметра граничных частиц фракций:

;   … и т.д.

Рисунок 8. – Дисперсный состав пыли

Таблица 7. – Дисперсионный  состав пыли

δ, мк

δср, мк (по форм. 9)

Δ Dn,%

Δ DnХδср3%, мк3

Δ D,%

δ, мк

D,%

0,4-1

0,7

85,90

29,4

9,3

1

9,3

1-2

1,5

11,96

40,4

12,8

2

22,1

2-5

3,5

1,94

83,3

26,2

5

48,3

2-10

7,5

0,17

71,6

22,5

10

70,8

10-15

12,5

0,02

39,1

12,3

15

93,1

15-20

17,5

1,01

53,5

16,9

20

100

Всего:

 

100,0

317,3

100,0

   

При расчете степени очистки  воздуха от пыли в выбранном типе циклона следует исходить из следующих  данных:

- диаметра корпуса циклона;

- принятой в проекте  величины гидравлических потерь;

- температуры воздуха;

- плотности материала  пылевых частиц;

- фракционного состава  пыли, характеризуемого двумя параметрами   и  ;

- диаметра частиц пыли, улавливаемых в данном циклоне  на 50%.

Рисунок 9. – Фракционная  степень очистки воздуха от пыли

Диаметры частиц пыли, улавливаемых на 50% ( ) для различных циклонов приведены в графике.

Рисунок 10. – Зависимость  частиц пыли от диаметра циклона типа

ЛИОТ

Графики построены по данным исследований, в которых использована кварцевая пыль плотностью 2,65 г/см при  температуре воздуха 200С (вязкость М = 183,10 г/см.сек.) (рисунок 10).

Поэтому в тех случаях, когда плотность частиц пыли не равна 2,65 г/см3, необходимо найденную из графиков величину пересчитать по формуле

где   диаметр частиц, улавливаемых в циклоне на 50% при плотности материала частиц г .

При температуре воздуха  не равной 200С полученную величину необходимо еще раз пересчитать па формуле

где   – диаметр частиц, улавливаемых в циклоне на 50% при плотности материала частиц   и вязкости воздуха  .

Для определения общей  степени очистки воздуха от пыли на логарифмически вероятностную сетку  (рисунок 11).

Рисунок 11. – Определение  общих степеней очистки циклонов

Таблица 8. – Размерные  характеристики циклонов типа ЛИОТ

Циклон

D

d

a

b

Нц

Нк

Нфл

Нb

Н

d1

№1

556

325

170

115

850

680

47

50

1580

140

280

№2

765

445

245

160

1225

980

67

75

2280

200

380

№3

970

570

300

200

1500

1200

80

90

2790

240

485

№4

1115

655

345

230

1725

1380

93

105

3210

280

560

№5

1230

730

385

250

1925

1540

103

115

3580

310

615

№6

1330

780

410

285

2050

1640

110

125

3815

330

665

№7

1445

845

445

300

2225

1780

120

135

4140

360

725

№8

1600

940

495

330

2475

1980

133

150

4605

400

800

№9

1765

1035

545

365

272

2180

147

165

5070

440

880

№10

1890

1110

585

390

2925

2340

160

180

5445

480

945


Рисунок 12. – Основные размерные характеристика циклона типа

ЛИОТ

Рисунок 13. – Номограмма зависимостей расхода воздуха от

гидравлических сопротивлений  циклонов при температуре воздуха

t=200

2.2 Подбор вентилятора  и электродвигателя

Расчетный расход воздуха  аспирационной системы Qp= 22000 м3/ч; расчетное гидравлическое сопротивление системы аспирации (соответствующее расчетному расходу воздуха и материала рр=550 даПа.

Она является точкой пересечения  абсциссы, соответствующей величине расчетного расхода воздуха, и ординаты, соответствующей величине расчетного сопротивления системы [22-23]. Наибольшему  значению КПД эта точка соответствует  на графической характеристике вентилятора  ВЦП7-40-5. Поскольку расчетная рабочая  точка не совпала ни с одной  характеристической кривой, находим  рабочую точку: через расчетную  рабочую точку проводим линию  КПД до пересечения с лежащей  выше характеристической кривой Р6-4а [23-24].

По рабочей точке находим  в таблицах 9-10 соответствующие данные для заказа электродвигателя

Таблица 9. – Комплектация вентиляторов электродвигателями

Вентилятор

Электродвигатель

Масса с электродвигателем, кг

Тип

Обозначение участка характеристической кривой

Частота вращения nb

мин-1

Тип

Установочная мощность Ny, кВт

Частота вращения nэ мин-1

ВЦП7-40-5

Р5-1а

1570

4AI00L4

4

1430

284,8

 

Р5-16

1570

4А112М4

5,5

1445

293,0

 

Р5-2а

1755

4А112М4

5,5

1445

293,0

 

Р5-26

1755

4A132S4

7,5

1455

324,0

 

Р5-3

I960

4A132S4

7,5

1455

324.0

 

Р5-4

2250

4А132М4

11

1460

337,0

 

Р5-5

2500

4A160S4

15

1465

363,0

В-ЦП7-40-6

Р6-1

1430

4A132S4

7,5

1455

411,0

 

Р6-2

1600

4А132М4

11

1460

424,0

 

Р6-3а

1790

4А132М4

11

1460

424,0

 

Р6-Зб

1790

4A160S4

15

1465

450,0

 

Р6-4а

2000

4AI60M4

18,5

1465

473,0

 

Р6-46

2000

4AI80S4

22

1470

5070

В-ЦП6-45-8

П8-1а

1285

4Л160М6

15

1465

700

 

П8-16

1285

4Л180М6

18,5

1465

725

 

П8-1в

1285

4А200М6

22

1470

740

 

П8-2а

1440

4А16ОМ4

18,5

1465

730

 

П8-26

1440

4A180S4

22

1470

745

 

П8-2в

1440

4А18ОМ4

30

1470

785

 

П8-За

1615

4А180М4

30

1470

790

 

П8-3б

1615

4А200М4

37

1475

885

 

П8-Зв

1615

4A2O0L4

45

1475

925

 

П8-4а

1650

4А200М4

37

1475

895

 

П8-4б

1650

4A2O0L4

45

1475

930


Таблица 10. – Основные размеры  вентиляторов типа В-ЦП, мм

Вентилятор

L

L1

l

B

b

А

В-ЦП7-40-5

В-ЦП7-40-6

В-ЦП6-45-8

1120

1290

1908

-

-

950

175

200

444

680

766

691

190

222

345,5

775

923

1222


Вентилятор

С

B1

L1

1

1

h2

3

D

а

В-ЦП7-40-5

В-ЦП7-40-6

В-ЦП6-45-8

630-650

700-760

900–1000

825

935

970

250

300

400

242

300

302

550

620

900

376

450

560

500

360

508

300

360

676

300

360

480


Рисунок 14. – Аэродинамическая характеристика вентилятора

В-ЦП7-40-6

Рисунок 15. – Основные размерные  характеристики вентиляторов

В-ЦП7-40-6 

Вывод 

1.  В курсовом проекте были рассчитаны: система аспирации и система очистки испарений гальванических ванн.

Движение газовоздушной смеси в системах аспирации обеспечивается за счет разности давления, создаваемой работой тягодутьевых машин.

Применяемые в этих случаях  пылеулавливающие сооружения называются системами аспирации – инженерные системы, используемые в отсасывании  воздуха от технологического оборудования.

Пылеулавливающие аппараты служат для отделения твердых  частиц от аспирационного воздуха. При  этом решаются две задачи: сбор уловленного  продукта для его дальнейшего  использования и очистка перед  выбросом его в атмосферу или  возвратом в производственное помещение.

2.  Все системы воздухоочистки состоят из следующих основных частей: трубопроводных сетей; тягодутьевых машин; пылеулавливающих аппаратов. Трубопроводные сети состоят из системы ответвлений (отсосов),и магистральных отводящих коллекторов. Ответвления служат для подключения технологического оборудования, имеющего аспирационные укрытия, оканчивающиеся присоединительными патрубками. По системе ответвлений отсасываемый от технологического оборудования воздух, удаляющий отходы или содержащий частично уносимый из технологического процесса материал, подводится к сборным участкам трубопровода или к другим сборным элементам сети и далее по отводящим коллекторам направляется к пылеулавливающим аппаратам. Пылеулавливающие аппараты служат для отделения твердых частиц от аспирационного воздуха.

Список использованной литературы 

1.  Уорк К. Загрязнение воздуха. Источники и контроль / Уорк К., Уорнер С.М. – Перевод с англ. / Под ред. Е.Н. Теверовского [Текст] – М.: МИР, 1980. – 466 с.

2.  Идельчик И.Е. Справочник по гидравлическим сопротивлениям / И.Е. Идельчик [Текст] – М.: Машиностроение, 1975.– 560 с.

3.  Краснов Ю.С. Справочник молодого слесаря по изготовлению и монтажу вентиляционных систем / Ю.С. Краснов, П.А. Овчинников [Текст] – М., 1983. – 322 с.

4.  Говоров В.П. Производство вентиляционных работ / В.П. Говоров, Е.Н. Зарецкий, Г.М. Рабкин [Текст] – М., 1982. – 406 с.

5.  Лейте В. Определение загрязнений воздуха в атмосфере и на рабочем месте. / Лейте В. – Пер. с нем. / Под ред. А.П. Коузова [Текст] – Л.: Химия, 1980. – 84 с.

6.  Пирумов АИ. Обеспыливание воздуха / А.И. Пирумов [Текст] – М.: Стройиздат, 1981. – 296 с.

7.  Инструкция о порядке рассмотрения, согласования и экспертизы воздухоохранных мероприятий и выдачи разрешений на выброс загрязняющих веществ в атмосферу по проектным решениям. ОНД 1-84 [Текст] – М.: Госкомгидромет.

8.  Методы оценки производственной среды промышленных предприятий. Сборник. / Под ред. Н.Ф. Измерова, Ю.Г. Широкова [Текст] – М.: Медицина, 1980. – 366 с.

9.  ГОСТ 12.1.005–76. Система стандартов безопасности труда. Воздух рабочей зоны. Общие санитарно-гигиенические требования. – М.: Стандарты, 1976.

10.  ГОСТ 12.1.016–79. Система стандартов безопасности труда. Воздух рабочей зоны. Требования к методикам измерения концентраций вредных веществ. – М.: Стандарты, 1979.

11.  Серпионова Е.Н. Промышленная адсорбция газов и паров / Е.Н. Сепринова [Текст] – М.: Высшая школа, 1969. – 420 с.

12.  Батурин В.В. Основы промышленной вентиляции / В.В. Батурин [Текст] – М.: Профиздат, 1976. – 250 с.

13.  Батурин В.В. Кучерук В.В. Вентиляция машиностроительных заводов / В.В. Батурин, В.В. Кучерук [Текст] – М.: Машгиз, 1984. – 384 с.

14.  Рысин С.А. Вентиляционные установки машиностроительных заводов / С.А. Рысин [Текст] – М.: Машгиз, 1960. – 612 с.

15.  Баранов М.М. Бортовые отсосы от промышленных ванн / М.М. Баранов [Текст] – М.: МИСП им. Куйбышева, 1978. – 122 с.

16.  Руководство по расчету и проектированию шумоглушения вентиляционных установок [Текст] – М.: Сантехпроект, НИИСФ, 1992. – 324 с.

17.  Виноградов Ю.Г. Материаловедение для слесарей сантехников, слесарей-монтажников и машинистов строительных машин / Ю.Г. Виноградов, К.С. Орлов, Л.А. Попова [Текст] – М., 1983. – 366 с.

18.  Агафонов, Е.П. Наладка систем промышленной вентиляции / Е.П. Агафонов [Текст] – М., 1978. – 156 с.

19.  Резников, Г.В. Аэроионизация в системах вентиляции и кондиционирования воздуха / Г.В. Резников [Текст] – М.: Прецизионные термосистемы, 2004. – 602 с.

20.  Свистунов В.М. Отопление, вентиляция и кондиционирование воздуха: Учебник для вузов / В.М. Свистунов, Н.К. Пушняков [Текст] – СПб.: Политехника, 2004.

21.  Коузов П.А. Указания по расчету циклонов / П.А. Коузов [Текст] – Л., 1971.– 54 с.

22.  Перечень категорий производств по взрывной, взрывопожарной н пожарной опасности и классов взрывоопасных и пожароопасных зон предприятий лесной и деревообрабатывающей промышленности. [Текст] Утвержден Минлесбумпромом СССР от 18 апреля 1984 г.

23.  Вентиляция и кондиционирование воздуха. Кн. 2: Внутренние санитарно-технические устройства. Ч. 3. [Текст] – М.: Стройиздат, 1992. – 544 с.

24.  Сибикин Ю.Д. Отопление, вентиляция и кондиционирование воздуха: Учебное пособие для среднего профессионального образования / Ю.Д. Сибикин [Текст] – М: Академия, 2004. – 344 с.

25.  Отопление, вентиляция и кондиционирование воздуха: Справочное пособие [Текст] – М.: Пантори, 2003. – 564 с.



Информация о работе Вентиляция гальванических цехов