Математика эллинистического периода. Теория конических сечений Аполлония

Автор: Пользователь скрыл имя, 22 Ноября 2011 в 17:46, реферат

Описание работы

Прежде всего необходимо четко себе представлять в каких исторических условиях развивалась греческая математика того периода. У известного исследователя истории математики Ван-дер-Вардена мы можем найти ответ на этот вопрос. С его точки зрения после Аполлония Пергского греческая геометрия сразу кончается. Есть, правда, некоторые проблески в виде работ Диокла и Зенодора, которые время от времени решали некоторые задачи, оставшиеся им от Архимеда и Аполлония словно крохи от пира великих . Выходили сборники вроде сочинения Паппа Александрийского.

Содержание

Вступление
Общие тенденции развития математики эллинистического периода
Аполлоний Пергский
Теория конических сечений Аполлония
Выводы
Литература

Работа содержит 1 файл

Аполлоний.doc

— 187.00 Кб (Скачать)

    Изучая  конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости.

    Эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.

    Эти определения конических сечений  как плоских кривых подсказывают и способ их построения с помощью натянутой нити.

     Эллипс. Если концы нити заданной длины закреплены в точках Fи F2 (рис. 5.3.2), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат – большой и малой осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность.

    Рисунок 5.3.2.

     Гипербола. При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках Fи F2, как показано на рисунке 5.3.3, а. Расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1 и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно отпуская ее. Вторую ветвь гиперболы мы вычерчиваем, предварительно поменяв шпеньки Fи F2.

    Рисунок 5.3.3.

    Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы, строятся как показано на рисунке 5.3.3, б. Угловые коэффициенты этих прямых равны  где  – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F2F1; отрезок v1v2 называется сопряженной осью гиперболы, а отрезок V1V2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v1, v2, V1, V2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек vи v2. Они находятся на одинаковом расстоянии, равном от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov1 и V2O и гипотенузой F2O.

    Если  асимптоты гиперболы взаимно  перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.

     Парабола. Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (вторая пол. III в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (VI в.).

    Рисунок 5.3.4.

    Расположим  линейку так, чтобы ее край совпал с директрисой  (рис. 5.3.4), и приложим к этому краю катет AC чертежного треугольника ABC. Закрепим один конец нити длиной AB в вершине B треугольника, а другой – в фокусе параболы F. Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой  так как общая длина нити равна AB, отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB, то есть PA. Точка пересечения V параболы с осью называется вершиной параболы, прямая, проходящая через F и V, – осью параболы. Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром. Для эллипса и гиперболы фокальный параметр определяется аналогично.

 

     Выводы

    Конечно, политические и экономические отношения  в стране играют далеко не последнюю  роль. Наука того времени стала принадлежностью придворных, попала в зависимость от библиотек и царских субсидий. Войны, тяжелые налоги, а позднее и римское владычество, выжимавшее из населения все соки – все это положило конец благосостоянию эллинистических стран. К тому же, когда Цезарь попал в Александрии в осаду, большая часть знаменитой библиотеки сгорела. Римские же императоры достаточно прохладно относились к чистой науке. А богатые римляне если и пускали к себе греческих деятелей культуры, то в основном скульпторов, педагогов и историков, но математиков к себе не приглашали.

Но хотя приведенные выше факты и играют не последнюю роль, но объясняют  далеко не все. Собственно говоря они  лишь помогают понять, почему наука  время от времени останавливалась, но не дают объяснения тому, что она в сущности пошла назад и пришла в полный упадок .

 

Литература

  1. Ван-дер-Варден Б.Л. Пробуждающаяся наука: математика древнего Египта, Вавилона и Греции: - М.: Госиздат, 1959. – 459 с.
  2. Крыситский В. Шеренга великих математиков: - Варшава: Наша Ксенгарня, 1981.- с.31-34.
  3. http://masters.donntu.edu.ua/
  4. http://webmath.exponenta.ru/
  5. http://www.n-t.org/

Информация о работе Математика эллинистического периода. Теория конических сечений Аполлония