Место математики в системе наук. Специфика математического знания

Автор: Пользователь скрыл имя, 08 Января 2012 в 21:35, доклад

Описание работы

Нау́ка — особый вид познавательной деятельности, направленной на получение, уточнение и производство объективных, системно-организованных и обоснованных знаний о природе, обществе и мышлении.

Работа содержит 1 файл

25. Место математики в системе наук. Специфика математического знания..doc

— 82.00 Кб (Скачать)
 

Место математики в системе  наук. Специфика математического  знания.

      Определения

      Нау́ка — особый вид познавательной деятельности, направленной на получение, уточнение и производство объективных, системно-организованных и обоснованных знаний о природе, обществе и мышлении.

      Матема́тика (от др.-греч. μάθημα — изучение, наука) — наука о структурах, порядке и отношениях, которая исторически сложилась на основе операций подсчёта, измерения и описания форм реальных объектов. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Математика является языком науки, который обеспечивает взаимосвязь различных наук.

      { Логицизм — одно из основных направлений математики, ставящее целью обосновать математику путем сведения ее исходных понятий к понятиям логики.

      Формализм — один из подходов к философии математики, пытающийся свести проблему оснований математики к изучению формальных систем. Наряду с логицизмом и интуиционизмом считался в XX веке одним из направлений фундаментализма в философии математики.

      Интуициони́зм — система философских и математических идей и методов, связанных с пониманием математики как совокупности «интуитивно убедительных» умственных построений. С точки зрения интуиционизма, основным критерием истинности математического суждения является интуитивная убедительность возможности проведения мысленного эксперимента, связываемого с этим суждением. Поэтому в интуиционистской математике отвергается теоретико-множественный подход к определению математических понятий, а также некоторые способы рассуждения, принятые в классической логике.}→следующий билет 
 

      История математики

      В истории математики традиционно выделяются несколько этапов развития математических знаний:

  1. Формирование понятия геометрической фигуры и числа как идеализации реальных объектов и множеств однородных объектов. Появление счёта и измерения, которые позволили сравнивать различные числа, длины, площади и объёмы.
  2. Изобретение арифметических операций. Накопление эмпирическим путём (методом проб и ошибок) знаний о свойствах арифметических действий, о способах измерения площадей и объёмов простых фигур и тел. В этом направлении далеко продвинулись шумеро-вавилонские, китайские и индийские математики древности.
  3. Появление в древней Греции дедуктивной математической системы, показавшей, как получать новые математические истины на основе уже имеющихся. Венцом достижений древнегреческой математики стали «Начала» Евклида, игравшие роль стандарта математической строгости в течение двух тысячелетий.
  4. Математики стран ислама не только сохранили античные достижения, но и смогли осуществить их синтез с открытиями индийских математиков, которые в теории чисел продвинулись дальше греков.
  5. В XVI—XVIII веках возрождается и уходит далеко вперёд европейская математика. Её концептуальной основой в этот период являлась уверенность в том, что математические модели являются своего рода идеальным скелетом Вселенной[L 1], и поэтому открытие математических истин является одновременно открытием новых свойств реального мира. Главным успехом на этом пути стала разработка математических моделей зависимости (функция) и ускоренного движения (анализ бесконечно малых). Все естественные науки были перестроены на базе новооткрытых математических моделей, и это привело к колоссальному их прогрессу.
  6. В XIX—XX веках становится понятно, что взаимоотношение математики и реальности далеко не столь просто, как ранее казалось. Не существует общепризнанного ответа на своего рода «основной вопрос философии математики»: найти причину «непостижимой эффективности математики в естественных науках». В этом, и не только в этом, отношении математики разделились на множество дискутирующих школ. Наметилось несколько опасных тенденций: чрезмерно узкая специализация, изоляция от практических задач и др. В то же время мощь математики и её престиж, поддержанный эффективностью применения, высоки как никогда прежде.
 

      Математика  в системе наук. Специфика математического знания.

      Место математики в системе наук определяется тем, что она играет для других дисциплин роль методологии. И не только в отношении естествознания, но и для наук социального, гуманитарного цикла. Как заметил еще Р. Декарт, математика вместе с тем, что она язык науки, является также способом мышления, инструментом доказательства. Таким образом, выполняет функцию общенаучного метода, принимая на себя, можно сказать, обязанности философской методологии.

      Обладая способностью представлять любую информацию в виде количественных характеристик, математика вырабатывает и особые, отличные от естествознания приемы исследования – математический эксперимент, математическая гипотеза, математическое моделирование. Их специфика состоит в том, что вместо операций с веществом и энергией добывают результат путем решения соответствующих дифференциальных уравнений, интерпретируя затем полученные числовые выражения в терминах содержательного значения.

      Вообще  выделяют три вида эксперимента (от лат. experimentum – проба, опыт): натуральный, мысленный и математический.

      Натуральный эксперимент представляет манипуляцию  с вещами и энергиями. Он осуществляется в контролируемых и управляемых  условиях, обычно, специально созданных. Мысленный эксперимент – это  также деятельность с материальными  предметами и процессами, но взятыми не в натуре, а на уровне образного прочтения физической ситуации и в значительной мере, как считал Р. Харре, опираясь на интуицию. Так Г. Галилей, рассуждая о возможности физических изменений систем, движущихся относительно других систем, провел мысленный эксперимент «наполнив» каюту корабля бабочками, мухами и т.п., стал «наблюдать» их поведение с целью определить разницу в состоянии , когда корабль плывет и когда он находится в покое.

      Математический  эксперимент, имея дело не с самими предметами и процессами природы, а с их количественным описанием, позволяет избежать материальных затрат на сооружение установок и лабораторий, ибо как заметил отечественных геометр А. Яглом, единственной лабораторией математики является ее интеллект.

      Аналогичным образом работает и математическая гипотеза, задавая физическую ситуацию на языке числовых параметров и оперируя затем последними. Так, вместо обычной используется своего рода вычислительная гипотеза, полученная на основе математических расчетов, благодаря чему имеет доступ к недоступным объектам. Эффективность математической гипотезы обусловлена возможностью на основе математического формализма находить по аналогии результат до выяснения его физического содержания.

      Также эффективно и математическое моделирование. По определению, модель есть заместитель объекта, на котором испытываются режимы работы исследуемого явления, и результаты переносятся с учетом масштабов на оригинал. Процедура получения информации на модели осуществляется следующим образом. Если А есть модель В, то выполняется такая зависимость y=f(x), где f – знак связи, y и x – переменные. Если, подставляя на место х характеристики А, будем получать на месте y набор значений В. В случае математического моделирования в качестве объекта-заместителя выступает не вещь, а набор дифференциальных уравнений, решая которые исследователь выводит результат и интерпретирует его в терминах вещественных характеристик изучаемого объекта. 

      Математика  и философия      

      Отрасль философии, исследующая природу  математических объектов и эпистемологические проблемы математического познания. Филос. проблемы математики можно разделить на две основные группы: онтологические и эпистемологические. Абстрактный характер объектов математики, особая убедительность и неопровержимость ее доказательств еще в антич. эпоху привлекли внимание философов к анализу особенностей предмета и метода математики. Тот факт, что ее понятия и суждения независимы от эмпирического опыта, а утверждения обладают весьма высокой степенью достоверности, уже давно стал аргументом в пользу существования независимых от опыта суждений a priori, а математическое знание стало представляться образцом чисто логического развития науки. В связи с этим и возникает основная онтологическая проблема — отношение математики к реальному миру: что она в нем изучает и какова природа ее объектов? 

      Одной из первых попыток решения этой проблемы стала концепция математического реализма, которую часто называют также платонизмом. Она постулирует, что математические объекты являются абстрактными, вечными и причинно не связанными с материальными предметами и эмпирическим опытом. Такой взгляд может объяснить, почему математика независима от опыта, а ее истины имеют достоверный характер. Однако как только возникает вопрос о ее приложении к естествознанию и др. конкретным наукам, то ни платонизм, ни позднее возникший реализм не могут удовлетворительно ответить на него.

      Близкой по онтологии к реализму или даже его разновидностью является концепция структурализма, рассматривающая математику как науку об абстрактных структурах. С этой т.зр. арифметика, напр., не является наукой о таких абстрактных объектах, как числа, а скорей — о теоретико-числовых структурах. Наиболее настойчиво структурный взгляд пропагандировали математики, выступавшие под псевдонимом «Н. Бурбаки». Они поставили перед собой амбициозную цель: изложить все математические дисциплины с помощью аксиоматического метода и т.о. представить все существующее математическое знание в виде грандиозной аксиоматической структуры. В качестве основных, или порождающих, структур они выделяют алгебраические, топологические и структуры порядка, путем комбинации которых образуются др. структуры. По своей онтологической природе структуры являются априорными конструкциями, и их совпадение с эмпирической реальностью чисто случайно. «В своей аксиоматической форме математика представляется скоплением абстрактных форм — математических структур, и оказывается (хотя, по существу, и неизвестно почему), что некоторые аспекты экспериментальной действительности как будто в результате предопределения укладываются в некоторые из этих форм» (Н. Бурбаки).

      Альтернативными реализму являются субъективные концепции, согласно которым содержание математики создается мышлением субъекта. Крайней формой такого субъективизма является убеждение, что существует столько математик, сколько самих математиков, и что даже каждый человек может создавать свою математику. Однако поскольку математическое знание и результаты его применения не зависят от сознания и воли отдельного субъекта, большинство сторонников субъективного подхода вынуждены признать если не объективность, то интерсубъективность математики, т.е. независимость ее результатов от индивидуального сознания. Для оправдания такой интерсубъективности чаще всего обращаются к философии Канта, которая обосновывает общезначимый и необходимый характер математических суждений тем, что объявляет их априорными формами познания, изначально присущими человеку. На эту кантианскую идею опирается и интуиционистская концепция математики, выдвинутая Л.Э.Я. Брауэром: «...Главным в математической деятельности являются умственные построения, осуществляемые на основе непосредственной интуиции, а не язык или логика, посредством которых выражаются результаты этой деятельности». Интуиционисты считают математические объекты существующими тогда, когда они построены, а доказательства фактически проведены.

      Др. альтернативой реализму являются представления  о математике и ее объекте как  свободных от к.-л. онтологии. Эти представления варьируются: одни рассматривают математику как особый метод, применимый во многих науках, но не имеющий ни своего содержания, ни собственного предмета исследования, др. предлагают говорить о математических объектах в модальных терминах, т.е. вместо того, чтобы считать их существующими, заявляют о возможности их существования, третьи — вообще объявляют их фикциями, и т.п. Такого рода инструменталистские взгляды не могут объяснить, почему возможные, а тем более фиктивные понятия математики могут применяться в содержательных рассуждениях естествознания, технических и социально-гуманитарных наук.

      Широкое распространение получил конструктивный подход к математике, сторонники которого, как и интуиционисты, отрицают законность применения в ней актуальной, ставшей бесконечности и вновь возвращаются к бесконечности потенциальной, становящейся. Конструктивисты опираются на более точные определения конструктивных объектов и операций, а также фундаментального понятия алгоритма, служащего основой для построения конструктивной математики. Выдающийся вклад в развитие этой математики внесла отечественная школа ученых во главе с А.А. Марковым. В отличие от интуиционистов, которые рассматривают математику как чисто умозрительную деятельность, связанную с построением математических объектов на «базисной интуиции интеллекта, без обращения к непосредственной применимости» (Брауэр), Марков указывает, что умозрительный характер имеют не сами построения, а наши рассуждения о них, в особенности когда начинают использоваться абстракции.

Информация о работе Место математики в системе наук. Специфика математического знания