Нормальна форма игр

Автор: Пользователь скрыл имя, 23 Февраля 2012 в 23:55, реферат

Описание работы

Теория игр — математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу — в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Работа содержит 1 файл

норм форма игр.doc

— 68.50 Кб (Скачать)


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

КИЕВСКИЙ НАЦИОНАЛЬНЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ им. Вадима Гетьмана

 

 

 

 

 

РЕФЕРАТ

На тему: «Нормальна форма ігр»

 

 

 

 

 

 

 

 

Виконав: студент 10 групи 2 курсу МЕИМ

Бондаренко А.А

Преподователь: Трохановский В.И.

 

 

 

 

Киев - 2011

 

Теория игр — математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу — в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Теория игр — это раздел прикладной математики, точнее — исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках — социологии, политологии, психологии, этике и других.

 

1.      Представление игр: нормальная и экстенсивная форма

Игры представляют собой строго определённые математические объекты. Игра образуется игроками, набором стратегий для каждого игрока и указания выигрышей, или платежей, игроков для каждой комбинации стратегий. Большинство кооперативных игр описываются характеристической функцией, в то время как для остальных видов чаще используют нормальную или экстенсивную форму.

Игры в экстенсивной, или расширенной, форме представляются в виде ориентированного дерева, где каждая вершина соответствует ситуации выбора игроком своей стратегии. Каждому игроку сопоставлен целый уровень вершин. Платежи записываются внизу дерева, под каждой листовой вершиной.

В нормальной, или стратегической, форме игра описывается платёжной матрицей. Каждая сторона (точнее, измерение) матрицы — это игрок, строки определяют стратегии первого игрока, а столбцы — второго. На пересечении двух стратегий можно увидеть выигрыши, которые получат игроки. В примере справа, если игрок 1 выбирает первую стратегию, а второй игрок — вторую стратегию, то на пересечении мы видим (−1, −1), это значит, что в результате хода оба игрока потеряли по одному очку.

Игроки выбирали стратегии с максимальным для себя результатом, но проиграли, из-за незнания хода другого игрока. Обычно в нормальной форме представляются игры, в которых ходы делаются одновременно, или хотя бы полагается, что все игроки не знают о том, что делают другие участники. Такие игры с неполной информацией будут рассмотрены ниже.

2.      Нормальная форма игры

В теории игр, игра в нормальной форме (или стратегической форме) состоит из трех элементов: множества игроков, множества чистых стратегий каждого игрока, множества платежных функций каждого игрока. Таким образом, игру в нормальной форме можно представить в виде n-мерной матрицы (таблицы), элементы которой это n-мерные платежные вектора.

3.      Два игрока/две стратегии

 

Игрок 1 L

Игрок 2 R

Игрок 1 U

4, 3

-1, -1

Игрок 2 D

0, 0

3, 4

 

Случай двух игроков — двух чистых стратегий отображен на таблице. Чистые стратегии первого игрока: U и D. Чистые стратегии второго игрока: L и R. Если первый игрок выбирает U, а второй игрок (единовременно) выбирает L, то соответствующие платежи равны 4 и 3 (первый элемент вектора (4, 3) обозначает платеж первого игрока, а второй — платеж второго игрока в случае, если были выбраны стратегии U и L). То есть чтобы найти распределение платежей, соответствующих каждому набору сыгранных стратегий, необходимо просто найти вектор, находящийся на пересечении соответствующих рядов и колонок таблицы (ряды соответствуют стратегиям первого игрока, а колонки — стратегиям второго игрока). Сыгранная комбинация стратегий называется исходом игры. В данном примере исход игры (U, L). Все возможные исходы для этой игры: {(U, L), (U, R), (D, L), (D, R)}. Очевидно, каждая ячейка таблицы соответствует одному из возможных исходов.

4.      Функция полезности

В общем случае предполагается, что игрок имеет предпочтения на множестве исходов. То есть для каждого игрока заданы бинарные отношения между элементами этого множества. Это значит, что игрок может сравнить любые два исхода: игрок или отдает предпочтение одному из двух исходов или остаться безразличным между обоими исходами. При определенных дополнительных предположениях относительно предпочтений игрока можно показать, что существует функция полезности Неймана-Монгенштерна представляющая полезность каждого исхода как действительное число u(s), при чем если u(s)≥u(s’) <=> игрок предпочитает (или безразличен) исход s исходу s’. В нашем примере первый игрок предпочитает исход (U, L) исходу (D, R) так как 4>3.

5.      Игры с полной/неполной информацией

В играх с полной информацией описание игры известно всем игрокам (все игроки знают чистые стратегии и функции полезности всех остальных игроков). В играх с неполной информацией некоторые игроки могут не знать функции полезности других игроков (то есть не знать некоторые конкретные значения для ячеек таблицы из нашего примера).

Любая игра в экстенсивной форме может быть представлена игрой в нормальной форме (не обязательно эквивалентной). Представление игры в нормальной форме может быть использовано для нахождения доминируемых стратегий.

Некооперативная игра в нормальной форме

Некооперативной игрой в нормальной форме называется тройка , где I - множество участников игры (сторон, игроков); Xi - множество стратегий участника i ∈ I; Hi - функция выигрыша участника i, определенная на множестве ситуаций и отображающая его во множество действительных чисел.

 

Некооперативная игра в нормальной форме предполагает следующий порядок разыгрывания.

1. Игроки одновременно и независимо друг от друга выбирают из множеств Xi свои стратегии. Вектор стратегий x = (x1, x2, ..., xn) всех игроков представляет собой ситуацию в игре.

2. Каждый игрок получает выигрыш, определяемый значением функции Hi(x), на этом взаимодействие между ними прекращается.

Нормальная форма игры описывает статическое взаимодействие игроков, не предусматривая возможности последовательных ходов, накопления информации о действиях соперника и повторяющегося взаимодействия. Для моделирования этих аспектов используется развернутая форма игры.

6.      Принципы оптимальности

Основным принципом оптимальности стратегий для некооперативных игр в нормальной форме является равновесие Нэша, основанное на невозможности отклонений участников от выбранных стратегий. К настоящему времени разработано семейство принципов, основанных на равновесии Нэша, и называемых очищениями равновесия Нэша (Nash equilibrium refinements), наиболее часто используемыми среди которых являются:

      равновесие дрожащей руки;

      собственное равновесие;

      сильное равновесие.

Менее универсальными, используемыми в отдельных классах некооперативных игр, являются следующие принципы:

      ε-равновесие;

      равновесие в доминирующих стратегиях;

      решение игры по доминированию;

      равновесие в осторожных стратегиях.

Для некооперативных игр в развернутой форме также используются принципы оптимальности, основанные на равновесии Нэша, но учитывающие специфику динамического взаимодействия игроков. К основным из них относятся:

      равновесие, совершенное по под-играм;

      секвенциальное равновесие;

      сильное секвенциальное равновесие.

 

7.      Формальное представление

— множество игроков

У каждого игрока имеется конечный набор чистых стратегий Si

Исход игры — это комбинация чистых стратегий каждого игрока: , где

Функция полезности i-го игрока (функция платежа):

Def.: В нормальной форме игра представляется как множество:

где:

— множество множеств чистых стратегий каждого игрока,

— множество функций платежей для каждого игрока



Информация о работе Нормальна форма игр