Антибиотики

Автор: Пользователь скрыл имя, 29 Мая 2012 в 17:40, реферат

Описание работы

Значительные успехи, достигнутые во второй половине XX в. в фундаментальных исследованиях в области биохимии, биоорганической химии и молекулярной биологии, создали предпосылки для управления элементарными механизмами жизнедеятельности клетки, что явилось мощным импульсом для развития биотехнологии. Выяснение роли нуклеиновых кислот в передаче наследственной информации, расшифровка генетического кода, раскрытие механизма индукции и репрессии генов, совершенствование технологии культивирования микроорганизмов, клеток и тканей растений и животных позволили разработать методы генетической и клеточной инженерии, с помощью которых можно искусственно создавать новые

Содержание

Введение 3
Антибиотики 5
Гормоны 10
Интерфероны, интерлейнины, факторы крови 12
Ферменты медицинского назначения 17
Заключение 19
Список используемой литературы 23

Работа содержит 1 файл

волкова катя.doc

— 122.50 Кб (Скачать)

    Содержание

    Введение 3

  1. Антибиотики                                                                                                      5
  2. Гормоны                                                                                                           10
  3. Интерфероны, интерлейнины, факторы крови                                            12
  4. Ферменты медицинского назначения                                                           17

    Заключение 19

    Список используемой литературы 23 
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

    Введение

    Значительные  успехи, достигнутые во второй половине XX в. в фундаментальных исследованиях в области биохимии, биоорганической химии и молекулярной биологии, создали предпосылки для управления элементарными механизмами жизнедеятельности клетки, что явилось мощным импульсом для развития биотехнологии. Выяснение роли нуклеиновых кислот в передаче наследственной информации, расшифровка генетического кода, раскрытие механизма индукции и репрессии генов, совершенствование технологии культивирования микроорганизмов, клеток и тканей растений и животных позволили разработать методы генетической и клеточной инженерии, с помощью которых можно искусственно создавать новые формы высокопродуктивных организмов. Генетическая и клеточная инженерия рассматривается как принципиально новое направление биологической науки, которое сегодня ставят в один ряд с расщеплением атома, преодолением земного притяжения и созданием средств электроники (Ю. А. Овчинников, 1985).

    Развитие  методов для изучения структуры  белков, выяснение механизмов функционирования и регуляции активности ферментов открыли путь к направленной модификации белков и привели к рождению инженерной энзимологии. Иммобилизованные ферменты, обладающие высокой стабильностью, становятся мощным инструментом для осуществления каталитических реакций в различных отраслях промышленности.

    Все эти достижения поставили биотехнологию  на новый уровень, качественно отличающийся от прежнего возможностью сознательно управлять клеточными процессами. В современном звучании биотехнология — это промышленное использование биологических процессов и агентов на основе получения высокоэффективных форм микроорганизмов, культур клеток и тканей растений и животных с заданными свойствами.

    Биотехнология — междисциплинарная область  научно-технического прогресса, возникшая на стыке биологических, химических и технических наук.

    Биотехнологический  процесс включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование  продуктов. Многоэтапность процесса обусловливает необходимость привлечения к его осуществлению самых различных специалистов: генетиков и молекулярных биологов, биохимиков и биооргаников, вирусологов, микробиологов и клеточных физиологов, инженеров-технологов, конструкторов биотехнологического оборудования и др.

    В Комплексной программе научно-технического прогресса стран — членов СЭВ  в качестве первоочередных задач  биотехнологии определены создание и широкое народнохозяйственное освоение:

    — новых биологически активных веществ  и лекарственных препаратов для медицины (интерферонов, инсулина, гормонов роста человека, моноклональных антител и т.д.), позволяющих осуществить в здравоохранении раннюю диагностику и лечение тяжелых заболеваний — сердечно-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных;

    — микробиологических средств защиты растений от болезней и вредителей, бактериальных удобрений и регуляторов  роста растений; новых высокопродуктивных и устойчивых к неблагоприятным факторам внешней среды сортов и гибридов сельскохозяйственных растений, полученных методами генетической и клеточной инженерии;

    — ценных кормовых добавок и биологически активных веществ (кормового белка, аминокислот, ферментов, витаминов, ветеринарных препаратов и др.) для повышения продуктивности животноводства; новых методов биоинженерии для эффективной профилактики, диагностики и терапии основных болезней сельскохозяйственных животных;

    — новых технологий получения хозяйственно ценных продуктов для использования в пищевой, химической, микробиологической и других отраслях промышленности;

    — технологий глубокой и эффективной  переработки сельскохозяйственных, промышленных и бытовых отходов, использования сточных вод и газовоздушных выбросов для получения биогаза и высококачественных удобрений.

    По  оценкам специалистов, мировой рынок  биотехнологической продукции уже к середине 90-х годов достигнет уровня 130—150 млрд. руб. (Ю. А. Овчинников, 1985).

    На  пути решения поставленных задач  биотехнологию подстерегают немалые трудности, связанные с исключительной сложностью организации живого. Любой биообъект — это целостная система, в которой нельзя изменить ни один из элементов, не меняя остальных, нельзя произвольно перекомбинировать их, придавая организму то или иное желаемое свойство, например бактерии — способность к сверхсинтезу требуемой аминокислоты, сельскохозяйственному растению — устойчивость к фитопатоген-ным грибкам. Успехи, достигнутые в области генетической и клеточной инженерии на простейших биологических системах, прокариотных организмах, вселяют уверенность в преодолимость рассмотренных трудностей. Что касается более сложных систем, а именно эукариотных организмов, то здесь делаются лишь первые шаги, идет накопление фундаментальных знаний. 
 
 
 
 
 
 
 
 
 
 
 
 
 

    1. Антибиотики

    Нет такого экспериментального подхода или исследовательского направления в биотехнологии, которые бы не получили применения в медицине. Вот почему столь многообразны связи между биотехнологией и самой гуманной из всех наук. Здесь мы остановимся лишь на основных моментах.

    Антибиотики.

    Антибиотики — это специфические продукты жизнедеятельности, обладающие высокой  физиологической активностью по отношению к определенным группам микроорганизмов и к злокачественным опухолям, избирательно задерживающих их рост или полностью подавляющих развитие (Н. С. Егоров, 1979). Далеко не все из этих соединений, число которых приближается к 5000, допущены для применения в медицине. К важнейшим антибиотикам терапевтического назначения принадлежат следующие их классы (табл. 2).

    Приведенные классы антибиотиков не исчерпывают их многообразия, список их пополняется с каждым годом. Причины неослабевающего внимания к поиску новых антибиотиков, как видно из табл. 10, связаны с токсичностью существующих антибиотиков, аллергическими реакциями, вызываемыми ими, нарастанием устойчивости патогенных микроорганизмов к применяемым препаратам и, помимо этого, с необходимостью изыскания средств борьбы с возбудителями, против которых недостаточно эффективны известные ныне антибиотики. Основные пути поиска включают:

  1. Испытание новых продуцентов. Так, с начала 80-х годов исследуют миксобактерии, продуцирующие большое количество антимикробных агентов (Н. Thierbach, N. Reichenbach, 1981).
  2. Химическая модификация антибиотиков. Противомикроб-ные макролиды токсичны для человека. Например, гептаен амфо-терицин В, используемый по жизненным показаниям при тяжелых микозах, вызывает необратимые поражения почек. Получены метиловые эфиры амфотерицина, менее токсичные и сохраняющие противогрибковую активность. При модификации пенициллинов и цефалоспоринов используют иммобилизованные ферменты.
 

    Таблица    2.    Важнейшие классы антибиотиков терапевтического назначения  (по И Г..  Егорову,  1979; Д.Ланчини, Ф   Паренти,  1985)

    Класс          Типичные  антибиотики          Продуценты          На  кого действует          Механизм  действии          Трудности терапевтического применения     
    b-Лактамные          Пенициллины, це-фалоспорины          Грибы   родов   Реnicillium,   Cephalosporum          Грамположитель-ные    и    грамотрицательные  бактерии          Нарушение синтеза клеточной стенки          Аллергические   реакции     
    Аминогликозидные          Стрептомицин, гентамицин,     канамицин, тобрамицин, амикацин          Актиномицеты  рода       Streptomyces, бактерии родов Micromonospora. Bacillus          В  основном   грамотрицательные   бактерии          Необратимое   подавление      синтеза белка          Токсическое действие на слуховой нерв и почки     
    Тетрациклины          Одноименные  антибиотики          Актиномицеты  рода Streptomyces          Грамположительные   и    грамотрицательные       бактерии, риккетсии, хламидии, простейшие          Обратимое подавление синтеза белка          Распространение устойчивых штаммов     
    Макролиды          Антибактериальные: эритромицин Противогрибковые и антипротозойные: полиены          Актиномицеты  рода Streptomyces То же          Грамположительные бактерии Грибы,   некоторые простейшие          То  же

    Нарушение  плазматической      мембраны

    
    Токсичность     
    Полипептидные и   депсипептидные          Полимиксины, грамицидины, бацитрацины          Различные микро-организмы          В  основном   грамотрицательные   бактерии          Механизм   действия различен          Высокая      токсичность     

 
    
  1. Мутасинтез. Применяют мутантные штаммы, у  которых блокирован синтез отдельных  фрагментов молекулы антибиотика. В  среду культивирования вносят аналоги  этих фрагментов. Микроорганизм использует эти аналоги для биосинтеза, в результате чего получают модифицированный антибиотик.
  2. Клеточная инженерия. Получают гибридные антибиотики, например, с новыми комбинациями агликона и Сахаров.
  3. Генетическая инженерия — введение в геном микроорганизма информации о ферменте, необходимом для модификации продуцируемого антибиотика, например его метилирования при помощи метилаз.

    Важной  задачей является повышение эффективности  биосинтеза известных антибиотиков. Значительных результатов удалось добиться за десятилетия селекции штаммов-продуцентов с применением индуцированного мутагенеза и ступенчатого отбора. Например, продуктивность штаммов Penicillium по синтезу пенициллина увеличена в 300—350 раз. Определенные перспективы открываются в связи с возможностью клонирования генов «узких мест» биосинтеза антибиотика или в случае, если все биосинтетические ферменты кодируются единым опероном.

    Многообещающим  подходом служит инкапсулирование антибиотиков, в частности их включение в лигюсомы, что позволяет прицельно доставлять препарат только к определенным органам и тканям, повышает его эффективность и снижает побочное действие. Этот подход применим и для других лекарственных препаратов. Например, кала-азар, болезнь, вызываемая лейгшма-нией, поддается лечению препаратами сурьмы. Однако лечебная доза этих препаратов токсична для человека. В составе липосом препараты сурьмы избирательно доставляются к органам, пораженным лейшманией, — селезенке и печени.

    Вместо  антибиотика в организм человека может вводиться его продуцент, антагонист возбудителя заболевания. Этот подход берет начало с работ И. И.Мечникова о подавлении гнилостной микрофлоры в толстом кишечнике человека посредством молочнокислых бактерий. Важную роль в возникновении кариеса зубов, по-видимому, играет обитающая во рту бактерия Streptococcus mutans, которая выделяет кислоты, разрушающие зубную эмаль и дентин. Получен мутант Strept. mutans, который при введении в ротовую полость почти не образует коррозивных кислот, вытесняет дикий патогенный штамм и выделяет летальный для него белковый продукт. 

    2. Гормоны

    Биотехнология предоставляет медицине новые пути получения ценных гормональных препаратов. Особенно большие сдвиги произошли в последние годы в направлении синтеза пеп-тидных гормонов.

    Раньше  гормоны получали из органов и  тканей животных и человека (крови  доноров, удаленных при операциях органов, трупного материала). Требовалось много материала для получения небольшого количества продукта. Так, человеческий гормон роста (соматотропин) получали из гипофиза человека, каждый гипофиз содержит его не более 4 мг. В то же время для лечения одного ребенка, страдающего карликовостью, требуется около 7 мг соматотропина в неделю; курс лечения должен продолжаться несколько лет. С применением генноинже-нерного штамма Е. coli в настоящее время получают до 100 мг гормона роста на 1 л среды культивирования. Открываются перспективы борьбы не только с карликовостью, но и с низкорос-лостью — более слабой степенью дефицита соматотропина. Соматотропин способствует заживлению ран и ожогов, наряду с каль-цитонином (гормоном щитовидной железы) регулирует обмен Са2+ в костной ткани.

    Инсулин, пептидный гормон островков Лангерганса  поджелудочной железы, представляет основное средство лечения при сахарном диабете. Эта болезнь вызвана дефицитом инсулина и проявляется повышением уровня глюкозы в крови. До недавнего времени инсулин получали из поджелудочной железы быка и свиньи. Препарат отличался от человеческого инсулина 1—3 аминокислотными заменами, так что возникала угроза аллергических реакций, особенно у детей. Широкомасштабное терапевтическое применение инсулина сдерживалось его высокой стоимостью и ограниченностью ресурсов. Путем химической модификации инсулин из животных удалось сделать неотличимым от человеческого, но это означало дополнительное удорожание продукта.

    Компания  Eli Lilly с 1982 г. производит генноинженерный инсулин на основе раздельного синтеза Е. coli его А- и В-цепей. Стоимость продукта значительно снизилась, получаемый инсулин идентичен человеческому. С 1980 г. в печати имеются сообщения о клонировании у Е. сой гена проинсулина — предшественника гормона, переходящего в зрелую форму при ограниченном протеолизе.

    К лечению диабета приложена также  технология инкапсули-рования: клетки поджелудочной железы в капсуле, введенные однократно в организм больного, продуцируют инсулин в течение года.

    Компания  Integrated Genetics приступила к выпуску фолли-кулостимулирующего и лютенизирующего гормонов. Эти пептиды составлены из двух субъединиц. На повестке дня вопрос о промышленном синтезе олигопептидных гормонов нервной системы — энкефалинов, построенных из 5 аминокислотных остатков, и эндорфинов, аналогов морфина. При рациональном применении эти пептиды снимают болевые ощущения, создают хорошее

Информация о работе Антибиотики