Черная дыра - факты и гипотезы

Автор: Пользователь скрыл имя, 27 Января 2011 в 00:35, реферат

Описание работы

Чем таинственней загадка, чем глубже проблема, тем больший интерес она вызывает и у специалистов, и у всех интересующихся наукой. А. Эйнштейн, создатель общей теории относительности, писал: “Самое прекрасное и глубокое переживание, выпадающее на долю человека, — это ощущение таинственности”. А у черных дыр и у Вселенной вряд ли найдутся конкуренты по части их загадочности.

Содержание

Введение

1. История открытия черных дыр.

2. Формирование черных дыр.

3. Свойства черных дыр.

Поиски черных дыр.
Список литературы.

Работа содержит 1 файл

контрольная естествознание.doc

— 93.00 Кб (Скачать)

Тема 66 – «Черная  дыра - факты и гипотезы».

План.

   Введение

    1. История открытия черных дыр.

    2. Формирование черных дыр.

   3. Свойства черных дыр.

  1. Поиски черных дыр.

    Список литературы. 

          Введение

    Из  всех измышлений человеческого ума, от единорогов и химер до водородной бомбы, наверное, самое фантастическое — это образ черный дыры, отделенной от остального пространства определенной границей, которую ничто не может пересечь; дыры, обладающей настолько сильным гравитационным полем, что даже свет задерживается его мертвой хваткой; дыры, искривляющей пространство и тормозящей время. Подобно единорогам и химерам, черная дыра кажется более уместной в фантастических романах или в мифах древности, чем в реальной Вселенной. И, тем не менее, законы современной физики фактически требуют, чтобы черные дыры существовали. Возможно, только наша Галактика содержит миллионы их” — так сказал о черных дырах американский физик К. Торн.

    К этому следует добавить, что внутри черной дыры удивительным образом меняются свойства пространства и времени, закручивающихся в своеобразную воронку, а в глубине находится граница, за которой время и пространство распадаются на кванты... Внутри черной дыры, за краем этой своеобразной гравитационной бездны, откуда нет выхода, текут удивительные физические процессы, проявляются новые законы природы.

    Чем таинственней загадка, чем глубже проблема, тем больший интерес она вызывает и у специалистов, и у всех интересующихся наукой. А. Эйнштейн, создатель общей  теории относительности, писал: “Самое прекрасное и глубокое переживание, выпадающее на долю человека, — это ощущение таинственности”. А у черных дыр и у Вселенной вряд ли найдутся конкуренты по части их загадочности. 

    1. История открытия черных дыр.

Имя П. Лапласа  хорошо известно в истории науки. Прежде всего он является автором огромного пятитомного труда “Трактат о небесной механике”. В этой работе, публиковавшейся с 1798 по 1825 год, им была представлена классическая теория движения тел Солнечной системы, основанная только на законе всемирного тяготения Ньютона. До этой работы некоторые наблюдаемые особенности движения планет, Луны, других тел Солнечной системы не были полностью объяснены. Казалось даже, что они противоречат закону Ньютона. П. Лаплас тонким математическим анализом показал, что все эти особенности объясняются взаимным притяжением небесных тел, влиянием тяготения планет друг на друга. Только одна сила царит в небесах, провозглашал он, — это сила тяготения. “Астрономия, рассматриваемая с наиболее общей точки зрения, есть великая проблема механики”, — писал П. Лаплас в предисловии к своему “Трактату”. Кстати, сам термин “небесная механика”, так прочно вошедший в науку, был впервые употреблен им.

     П. Лаплас был также одним из первых, кто понял необходимость исторического  подхода к объяснению свойств систем небесных тел. Он вслед за И. Кантом предложил гипотезу происхождения Солнечной системы из первоначально разреженной материи.

     Главная идея гипотезы Лапласа о конденсации  Солнца и планет из газовой туманности и до сих пор служит основой  современных теорий происхождения Солнечной системы...

     Обо всем этом много писалось в литературе и в учебниках точно так  же, как и о гордых словах П. Лапласа, который в ответ на вопрос Наполеона: почему в его “Небесной механике”  не упоминается бог? — сказал: “Я не нуждаюсь в этой гипотезе”. 

А вот о чем  до последнего времени было мало известно, — это о предсказании им возможности  существования невидимых звезд.

     Предсказание  было сделано в его книге “Изложение систем мира”, вышедшей в 1795 году. В  этой книге, которую мы бы сегодня назвали популярной, знаменитый математик ни разу не прибегнул к формулам и чертежам. Глубокое убеждение П. Лапласа в том, что тяготение действует на свет точно так же, как и на другие тела, позволило ему написать следующие знаменательные слова:

     “Светящаяся звезда с плотностью, равной плотности  Земли и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому  лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие  небесные тела во Вселенной оказываются  по этой причине невидимыми”.

     В книге не приводилось доказательств  этого утверждения. Оно было опубликовано им несколько лет спустя.

     Как рассуждал П. Лаплас? Он рассчитал, пользуясь  теорией тяготения Ньютона, величину, которую мы теперь называем второй космической скоростью, на поверхности звезды. Это та скорость, которую надо придать любому телу, чтобы оно, поборов тяготение, навсегда улетело от звезды или планеты в космическое пространство. Если начальная скорость тела меньше второй космической, то силы тяготения затормозят и остановят движение тела и заставят его снова падать к тяготеющему центру. В наше время космических полетов каждый знает, что вторая космическая скорость на поверхности Земли равна 11 километрам в секунду. Вторая космическая скорость на поверхности небесного тела тем больше, чем больше масса и чем меньше радиус этого тела. Эю понятно: ведь с ростом массы тяготение увеличивается, а с ростом расстояния от центра оно ослабевает.

     На  поверхности Луны вторая космическая  скорость равна 2,4 километра в секунду, на поверхности Юпитера 61 км/c, на Солнце — 620 км/c, а на поверхности так называемых нейтронных звезд, которые по массе примерно такие же, как Солнце, но имеют радиус всего в десять километров, эта скорость достигает половины скорости света — 150 тысяч километров в секунду.

     Представим  себе, рассуждал П. Лаплас, что мы возьмем небесное тело, на поверхности  которого вторая космическая скорость уже превышает скорость света. Тогда  свет от такой звезды не сможет улететь  в космос из-за действия тяготения, не сможет достичь далекого наблюдателя и мы не увидим звезду, несмотря на то, что она излучает свет!

     Это было блестящим предвидением одного из свойств чёрной дыры — не выпускать свет, быть невидимой. Справедливости ради надо отметить, что П. Лаплас был не единственным ученым и формально даже не самым первым, кто сделал подобное предсказание. Сравнительно недавно выяснилось, что в 1783 году с аналогичным утверждением выступал английский священник и геолог, один из основателей научной сейсмологии, Дж. Митчелл. Его аргументация была очень похожа на аргументацию П. Лапласа.

     Но  предвидение П. Лапласа и Дж. Митчелла еще не было настоящим предсказанием черной дыры. Почему?

     Дело  в том, что во времена П Лапласа  еще не было известно, что быстрее  света в природе ничто не может двигаться. Обогнать свет в пустоте нельзя! Это было установлено А Эйнштейном в специальной теории относительности уже в нашем веке. Поэтому для П. Лапласа рассматриваемая им звезда была только черной (несветящейся), и он не мог знать, что такая звезда теряет способность вообще как-либо “общаться” с внешним миром, что-либо “сообщать” далеким мирам о происходящих на ней событиях. Иными словами, он еще не знал, что это не только “черная”, но и “дыра”, в которую можно упасть, но невозможно выбраться. Теперь мы знаем, что если из какой-то области пространства не может выйти свет, то, значит, и вообще ничто не может выйти, и такой объект мы называем черной дырой. 

     Во  второй раз ученые «столкнулись»  с черными дырами в 1916, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений только что созданной тогда Альбертом Эйнштейном релятивистской теории гравитации – общей теории относительности (ОТО). Оказалось, что пустое пространство вокруг массивной точки обладает особенностью на расстоянии rg от нее; именно поэтому величину rg часто называют «шварцшильдовским радиусом», а соответствующую поверхность (горизонт событий) – шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие удивительные особенности решения Шварцшильда, но как реальный объект исследования черные дыры еще не рассматривались.

     Правда, в 1930-е, после создания квантовой  механики и открытия нейтрона, физики исследовали возможность формирования компактных объектов (белых карликов и нейтронных звезд)как продуктов эволюции нормальных звезд. Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться превратиться в маленький и очень плотный белый карлик или же в еще более плотную и совсем крохотную нейтронную звезду.

     В 1934 работавшие в США европейские  астрономы Фриц Цвикки и Вальтер  Бааде выдвинули гипотезу – вспышки  сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных  катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса.

     В 1939 американские физики Роберт Оппенгеймер  и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект (как говорили тогда, «коллапсар», или «застывшая звезда») не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску.

     Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин «черная дыра», предложенный в 1967 американским физиком Джоном Арчибальдом Уилером. 

   2. Формирование черных дыр.

Самый очевидный  путь образования черной дыры –  коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас  ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.

     Наиболее  быстро сжимается ядро звезды, при  этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она «выигрывает битву с гравитацией»: его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg, черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

     Астрономические наблюдения хорошо согласуются с  этими расчетами: все компоненты двойных звездных систем, проявляющие  свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.

     Если  в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. «Первичные черные дыры» с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м (как у протона или нейтрона).

     Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится («испарится»), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц. 

Информация о работе Черная дыра - факты и гипотезы