История развития науки химии

Автор: Пользователь скрыл имя, 28 Октября 2011 в 06:40, реферат

Описание работы

Прежде чем достигнуть современного состояния, химия прошла сложный многовековой путь развития. С течением времени круг известных химикам веществ, методов их получения и исследования постепенно расширялся. Одновременно расширялись и совершенствовались теоретические представления о составе и строении веществ, о химических явлениях и процессах.

Работа содержит 1 файл

РЕФЕРАТ!!!!.docx

— 63.25 Кб (Скачать)

     К началу 20-х годов XX века изменилось само понятие химического элемента, берущее начало от Роберта Бойля. Вместо элемента как химически неразложимого  вещества, состоящего из тождественных  неделимых атомов, сформировалось представление  об элементе как о совокупности атомов с одинаковым зарядом ядра. В 1919 г. Резерфорд осуществил первую искусственную  ядерную реакцию, превратив азот в кислород бомбардировкой α-частицами, и экспериментально доказал существование протона; в 1920 г. он же высказал гипотезу о существовании нейтрона (который был экспериментально обнаружен Чедвиком в 1931 г.). Весьма примечательно, что название ядра простейшего атома – протон – созвучно праутовскому протилу.

     Открытие  основных составных частей атома  и возможности превращений элементов (оказалось, алхимики были не столь  уж и не правы, говоря о том, что  трансмутация – лишь вопрос искусства!) привело к коренному пересмотру представлений о строении вещества. Алхимический термин трансмутация возвратился в науку; теперь он стал означать превращение атомов одних химических элементов в другие в результате радиоактивного распада их ядер либо ядерных реакций.

     Первые  модели строения атома появляются в  самом начале XX века. Жан Перрен в 1901 г. высказал предположение о ядерно-планетарном устройстве атома.  Подобную же модель предложил в 1904 г. японский физик Хантаро Нагаока. В модели Нагаоки атом уподоблялся планете Сатурн; роль планеты выполнял положительно заряженный шар, представляющий собой основную часть объёма атома, а электроны располагались подобно спутникам Сатурна, образующим его кольца. Однако наиболее широкое распространение получила т.н. кексовая модель атома: в 1902 г. Уильям Томсон (лорд Кельвин) высказал предположение о том, что атом представляет собой сгусток положительно заряженной материи, внутри которого равномерно распределены электроны. Простейший атом – атом водорода – представлял собой, по мнению У. Томсона, положительно заряженный шар, в центре которого находится электрон. Детально данную модель разработал Дж. Дж. Томсон, считавший, что электроны внутри положительно заряженного шара расположены в одной плоскости и образуют концентрические кольца. Дж. Дж. Томсон предложил способ определения числа электронов в атоме, основанный на рассеивании рентгеновских лучей, основанный на предположении, что именно электроны должны являться центрами рассеивания. Проведённые эксперименты показали, что количество электронов в атомах элементов равно приблизительно половине величины атомной массы. Дж. Дж. Томсон, предположив, что число электронов в атоме непрерывно возрастает при переходе от элемента к элементу, впервые попытался связать строение атомов с периодичностью свойств элементов.

Представления о природе химической связи

     На  протяжении всего XIX века химия, основанная на атомно-молекулярной теории, не могла  дать никаких объяснений природе  связи между атомами. Понятие  валентности, при всей плодотворности его применения, оставалось сугубо эмпирическим. Лишь после открытия делимости атома и установления природы электрона как составной  части атома возникли реальные предпосылки  для разработки первых теорий химической связи.

     Немецкие  учёные Рихард Вильгельм Генрих Абегг и Гвидо Бодлендер в 1899 г. высказали идею о сродстве атомов к электрону – способности атомов присоединять электрон: "Вследствие того, что для существования неорганических соединений сродство атомов или отдельных групп к электрическому заряду оказывается гораздо более важным, нежели сродство их друг к другу, кажется вполне целесообразным принять за основу систематики неорганических веществ именно это сродство элементов и радикалов к электричеству...".

     На  основе этих представлений Абегг в 1904 г. разработал теорию электровалентности. Валентностью, по мнению Абегга, обладают ионы, и величина валентности равна заряду иона. Каждый элемент характеризуется двумя максимальными валентностями – положительной и отрицательной, сумма которых равна восьми. Одна из них, производящая более сильное действие, нормальная, другая – контрвалентность. Для семи групп периодической системы Абегг приводил следующие значения нормальных и контрвалентностей.

     Представления об электровалентности или полярной валентности получили развитие в работах немецкого физика Вальтера Косселя. В 1916 г. он разработал теорию гетерополярной (ионной) связи, основанную на модели атома Бора и представлении об особой стабильности двух- или восьмиэлектронных оболочек инертных газов. Реакционная способность атома, по Косселю, определяется его стремлением приобрести такую электронную конфигурацию. Учитывая тот факт, что большинство неорганических соединений полярно и способно диссоциировать на ионы, он предположил, что природа валентных сил заключается в электростатическом притяжении ионов, образующихся за счёт отдачи одним атомов одного или нескольких электронов другому. Ниже приведена схема образования молекулы фторида натрия по Косселю.

     В 1916 г. американский химик Джилберт Ньютон Льюис предложил теорию кубического атома, основанную на сходных предпосылках. Согласно Льюису, химическая инертность элементов нулевой группы периодической системы объясняется тем, что группы из двух или восьми электронов являются очень устойчивыми. По мнению Льюиса, атом гелия имеет два электрона; атом неона – два электрона, расположенных внутри куба, образованного восемью электронами. В аргоне ещё восемь электронов расположены в вершинах куба, внешнего по отношению к кубу неона. Атомы других элементам стремятся к приобретению или отдаче электронов, чтобы приобрести электронную конфигурацию инертного газа. Образование связи между одинаковыми атомами Льюис объяснил возможностью обобществления валентных электронов. Льюис предложил также способ изображения связей, в котором каждый валентный электрон обозначается точкой (формулы Льюиса).

Однако  многие вопросы по-прежнему оставались без ответов. Теория Льюиса-Ленгмюра не могла объяснить причины связующего действия электронной пары; помимо этого, имелось множество отклонений от правила октета. Окончательное установление природы связи между атомами оказалось возможным лишь на основании принципиально новых – квантовомеханических – представлений.

Квантовая химия

     Для того, чтобы объяснить устойчивость атома, Нильс Бор соединил в своей модели классические и квантовые представления о движении электрона. Однако искусственность такого соединения была очевидна с самого начала. Развитие квантовой теории привело к изменению классических представлений о структуре материи, движении, причинности, пространстве, времени и т.д., что способствовало коренному преобразованию картины мира. В конце 20-х – начале 30-х годов XX века на основе квантовой теории сформировались принципиально новые теории строения атома и образования химической связи.

     После создания Альбертом Эйнштейном фотонной теории света (1905) и выведения им статистических законов электронных  переходов в атоме (1917) в физике обострилась проблема "волна –  частица". Если в XVIII-XIX веках имелись  расхождения между различными учеными, которые для объяснения одних  и тех же явлений в оптике привлекали либо волновую, либо корпускулярную теорию, то теперь противоречие приобрело принципиальный характер: одни явления (дифракция) интерпретировались с волновых позиций, а другие (фотоэффект) – с корпускулярных.

     Разрешение  этого противоречия предложил в 1924 г. французский физик Луи Виктор Пьер Раймон де Бройль, приписавший волновые свойства частице. Распространив идею о двойственной природе света на вещество, де Бройль предположил наличие у материальных частиц волновых свойств, однозначно связанных с массой и энергией. Он показал, что движению электрона может соответствовать некоторая волна материи, так же как движению светового кванта соответствует световая волна. Де Бройль предложил объяснить квантовые условия теории Бора с помощью представления о волнах материи. Волна, движущаяся вокруг ядра атома, по геометрическим соображениям может быть только стационарной волной; длина орбиты должна быть кратной целому числу длин волн. Гипотеза де Бройля о наличии у электронов волновых свойств была подтверждена обнаруженным в 1927 г. явлением дифракции электронов: оказалось, что пучок электронов дает дифракционную картину (позже будет обнаружена дифракция атомов и молекул).

     Исходя  из идеи де Бройля о волнах материи, австрийский физик Эрвин Шрёдингер  в 1926 г. вывел основное уравнение  т.н. волновой механики, содержащее волновую функцию и позволяющее определить возможные состояния квантовой  системы и их изменение во времени. Шредингер дал общее правило  преобразования классических уравнений  в волновые. В рамках волновой механики атом можно было представить в виде ядра, окруженного стационарной волной материи. Волновая функция определяла плотность вероятности нахождения электрона в данной точке.

В том  же 1926 г. немецкий физик Вернер Гейзенберг разработал свой вариант квантовой  теории атома в виде матричной  механики, отталкиваясь при этом от сформулированного Бором принципа соответствия. Согласно принципу соответствия, законы квантовой физики должны переходить в классические законы, когда квантовая дискретность стремится к нулю при увеличении квантового числа). В более общем виде принцип соответствия можно сформулировать следующим образом: новая теория, которая претендует на более широкую область применимости по сравнению со старой, должна включать в себя последнюю как частный случай. Квантовая механика Гейзенберга позволяла объяснить существование стационарных квантованных энергетических состояний и рассчитать энергетические уровни различных систем.

Результаты, к которым приводили методы, используемые в волновой механике Шрёдингера и  матричной механике Гейзенберга, оказались  одинаковыми, поэтому обе концепции  и входят в единую квантовую теорию как эквивалентные.

     Благодаря квантовой механике к 30-м годам XX века в основном был выяснен способ образования связи между атомами  (что, кстати говоря, являлось труднейшим вопросом атомизма, начиная от Левкиппа и Демокрита). Кроме того, в рамках квантово-механического подхода получило корректную физическую интерпретацию менделеевское учение о периодичности.

 

ЗАКЛЮЧЕНИЕ

     К середине 30-х годов XX века химическая теория приобретает вполне современный  вид. Хотя основные концепции химии  в дальнейшем стремительно развивались, принципиальных изменений в теории больше не происходило.

     Прежде  всего, создание надёжного теоретического фундамента привело к значительному росту возможностей прогнозирования свойств вещества. Современная химия немыслима без широкого использования физико-математического аппарата и разнообразных расчётных методов. Прогностические возможности химии распространяются не только на свойства вещества, основные количественные характеристики которых зачастую могут быть рассчитаны до опыта, но и на условия синтеза этого вещества.

     Еще одной особенностью химии в ХХ веке стало появление большого числа  новых аналитических методов, прежде всего физических и физико-химических. Широкое распространение получили рентгеновская, электронная и инфракрасная спектроскопия, магнетохимия и масс-спектрометрия, спектроскопия ЭПР (электронного парамагнитного резонанса) и ЯМР (ядерного магнитного резонанса), рентгеноструктурный анализ и т.п.; список используемых методов чрезвычайно обширен. Новые данные, полученные с помощью физико-химических методов, заставили пересмотреть целый ряд фундаментальных понятий и представлений химии. Сегодня ни одно химическое исследование не обходится без привлечения физических методов, которые позволяют определять состав исследуемых объектов, устанавливать мельчайшие детали строения молекул, отслеживать протекание сложнейших химических процессов.

     Для современной химии также стало  очень характерным всё более  тесное взаимодействие с другими  естественными науками. Физическая и биологическая химия стали  важнейшими разделами химии наряду с классическими – неорганической, органической и аналитической. Пожалуй, именно биохимия со второй половины ХХ столетия занимает лидирующее положение в естествознании. Характер взаимодействия естественных наук в XX веке В. И. Вернадский определил следующим образом: «…Рост научного знания быстро стирает грани между отдельными науками. Мы всё больше специализируемся не по наукам, а по проблемам. Это позволяет, с одной стороны, чрезвычайно углубляться в изучаемое явление, а с другой – расширить охват его со всех точек зрения».

     Одновременно  с процессом интеграции естественных наук в ХХ столетии интенсивно протекал и процесс дифференциации самой  химии. Хотя границы между вновь  выделяющимися разделами химии  достаточно условны, коллоидная и координационная  химия, кристаллохимия и электрохимия, химия высокомолекулярных соединений и некоторые другие разделы приобретают  черты самостоятельных наук.

Все перечисленные  особенности современной химии  в совокупности способствовали значительному  увеличению скорости накопления химических знаний. Объём знаний настолько вырос, что изобилие информации стало одной  из серьёзных проблем сегодняшней  науки.

     Впрочем, современная химия дала в руки людей также и эффективные  средства сокращения продолжительности  человеческой жизни. Достижения науки  далеко не всегда используются людьми в благих целях, не всегда результаты практического использования научных  открытий оказываются в точности такими, как ожидалось. Всякий успех  в деле покорения природы неизбежно  влечёт за собой, наряду с выгодами, ещё и появление новых проблем  – экологических, этических и  т.п., решение которых опять-таки является не в последнюю очередь  задачей науки.

Информация о работе История развития науки химии