Электромагнитная картина мира

Автор: Пользователь скрыл имя, 26 Февраля 2012 в 10:06, лекция

Описание работы

Электромагнитная картина мира начала формироваться во второй половине 19 века, на основе исследований в области электромагнетизма. Основную роль здесь сыграли исследования М.Фарадея и Д. Максвелла, которые ввели понятие физического поля. В процессе формирования этого понятия на смену механической модели эфира пришла электромагнитная модель: электрическое, магнитное и электромагнитные поля трактовались первоначально как разные «состояния» эфира.

Работа содержит 1 файл

Электромагнитная картина мира начала формироваться во второй половине 19 века.docx

— 354.19 Кб (Скачать)

Электромагнитная картина мира начала формироваться во второй половине 19 века, на основе исследований в области электромагнетизма. Основную роль здесь сыграли исследования М.Фарадея и Д. Максвелла, которые ввели понятие физического поля. В процессе формирования этого понятия на смену механической модели эфира пришла электромагнитная модель: электрическое, магнитное и электромагнитные поля трактовались первоначально как разные «состояния» эфира. В последствии необходимость в эфире отпала. Пришло понимание того, что электромагнитное поле само есть определенный вид материи и для его распространения не требуется какая-то особая среда-эфир.

ЭМКМ продолжала формироваться  в течение трех десятилетий 20 века. Она использовала не только учение о магнетизма и достижения атомистики, но так же и некоторые идеи современной физики (теории относительности и квантовой механики). После того как объектом изучения физики наряду с веществом стали разнообразные поля, КМ приобрела более сложный характер, но все равно это была картина классической физики.

Основные ее черты следующие. Согласно этой картине материя существует в двух видах – веществе и поле, между которыми имеется непроходимая грань: вещество не превращается в поле и наоборот. Известны два вида поля -  электромагнитное и гравитационное, соответственно – два вида фундаментальных взаимодействий. Поля в отличии от вещества, непрерывно распределяются в пространстве. ЭМ взаимодействие объясняет не только электрические и магнитные явления, но и другие – оптические, химические, тепловые. Теперь все стремятся свести к электромагнетизму. Вне сферы господства электромагнетизма остается лишь тяготение.

В качестве элементарных «кирпичиков», из которых состоит вся материя, рассматриваются три частицы  – электрон, протон и фотон. Фотон  – кванты электромагнитного поля. Корпускулярно-волновой дуализм «примиряет»  волновую природу поля с корпускулярной, т.е. при рассмотрении ЭМ поля используются на ряду с волновыми, и корпускулярные (фотонные) представления. Элементарные «кирпичики» вещества - электроны и протоны. Вещество состоит из молекул, молекулы из атомов, атом имеет массивное ядро и электронную оболочку. Ядро состоит из протонов. Силы действующие в веществе, сводились к электромагнитным. Эти силы отвечают за межмолекулярные связи и связи между атомами в молекуле; они удерживают электроны атомной оболочки вблизи ядра; они же обеспечивают прочность атомного ядра (что оказалось неверным). Электрон и протон стабильные частицы, поэтому атомы и их ядра тоже стабильны. Картина, на первый взгляд, выглядела безупречно. Но в эти рамки не вписывались такие, как считалось тогда, «мелочи», например, радиоактивность и др. Скоро выяснилось, что эти «мелочи» являются принципиальными. Именно они и привели к «краху»ЭМКМ.

ЭМКМ представляла огромный шаг  вперед в познании мира. Многие ее детали сохранились в современной ЕНКМ: понятие физического поля, электромагнитная природа сил, отвечающих за различные явления в веществе (но и не в самих атомах), ядерная модель атома, дуализм(двойственность) корпускулярных и волновых свойств материи и др. Но и в этой КМ также господствуют однозначные причинно-следственные связи, все таким же образом жестоко предопределено. Вероятностные физические закономерности не признаются фундаментальными и поэтому не включаются и в нее. Эти вероятности относили к коллективам молекул, а сами молекулы все равно следовали однозначным ньютоновским законам. Не менялись представления о месте и роли человека во Вселенной. Таким образом, и для ЭМКМ так же характерна метафизичность мышления, где все четко разграничено, внутренние противоречия отсутствуют.

Основы новых представлений  о материи были заложены в работах X. Эрстеда и А. Ампера в конце XVIII – начале XIX века. Затем, в процессе длительных размышлений о сущности электрических и магнитных явлений, М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными, непрерывными. Открыв явление электромагнитной индукции, он сделал вывод, что огромную роль в передаче электрических и магнитных сил играет среда. Одним из первых идеи Фарадея оценил Д. Максвелл, создавший электромагнитную теорию в середине XIX века. Тем самым было завершено создание электродинамики, еще одной фундаментальной физической теории.

Важнейшими понятиями новой  теории являются: заряд, который может  быть как положительным, так и  отрицательным; напряженность поля – сила, которая действовала бы на тело, несущее единичный заряд, если бы оно находилось в рассматриваемой точке.

 

Дж. Максвелл (1831–1879)

Когда электрические заряды движутся друг относительно друга, появляется дополнительная магнитная сила. Поэтому общая  сила, объединяющая электрическую и  магнитную силы, называется электромагнитной. Считается, что электрические силы соответствуют покоящимся зарядам, магнитные силы – движущимся зарядам. Все многообразие этих сил и зарядов описывается системой уравнений классической электродинамики. Они известны как уравнения Максвелла. Эти уравнения имеют решения, которые описывают электромагнитные волны, распространяющиеся со скоростью света. Из них можно получить решения для совокупности всех волн, которые могут распространяться в любом направлении в пространстве.

Таким образом, были выдвинуты новые  как физические, так и философские  взгляды на материю, пространство, время и силы, во многом изменившие прежнюю механическую картину мира. Разумеется, нельзя сказать, что эти изменения были кардинальны, так как они осуществились в рамках классической науки. Поэтому новую электромагнитную картину мира можно считать промежуточной, соединяющей в себе как новые идеи, так и старые механистические представления о мире.

Новая картина мира требовала нового решения проблемы физического взаимодействия. Ньютоновская концепция дальнодействия заменялась фарадеевским принципом близкодействия. Он утверждал, что любые взаимодействия передаются полем от точки к точке, непрерывно и с конечной скоростью.

Ньютоновская концепция абсолютного пространства и абсолютного времени не подходила к новым полевым представлениям о материи, так как поля не имеют четко очерченных границ и перекрывают друг друга. Кроме того, поля – это абсолютно непрерывная материя, поэтому пустого пространства просто нет. Так же и время должно быть неразрывно связано с процессами, происходящими в поле. Было ясно, что пространство и время должны перестать быть самостоятельными, независимыми oт материи сущностями. Но инерция мышления и сила привычки были столь велики, что еще долго ученые предпочитали верить в существование абсолютного пространства и абсолютного времени. Лишь к началу XX века эти взгляды уступили место относительной концепции пространства и времени, в соответствии с которой пространство, время и материя существуют только вместе, полностью зависят друг от друга.

Новая электромагнитная картина мира объяснила большой круг явлений, непонятных с точки зрения прежней  механической картины мира. Она глубже вскрыла материальное единство мира, поскольку электричество, магнетизм, свет объяснялись на основе одних и тех же законов.

Однако и на этом пути вскоре стали  возникать непреодолимые трудности, что наглядно показало переходный характер новой картины мира. Так, согласно электромагнитной картине мира заряд стал считаться точечным центром, а факты свидетельствовали о конечной протяженности частицы-заряда. Поэтому уже в электронной теории X. Лоренца частица-заряд вопреки новой картине мира стала рассматриваться в виде твердого заряженного шарика, обладающего массой.

Непонятными оказались результаты опытов Майкельсона–Морли, в которых пытались обнаружить «эфирный ветер». Свет в то время считали электромагнитными волнами, которые распространялись в особой среде – эфире. Наблюдатель на Земле перемещается относительно эфира вследствие движения Земли, а потому воспринимаемая скорость света должна зависеть от скорости движения планеты. Это и было явление «эфирного ветра», поиск которого продолжался в целом ряде опытов вышеназванных ученых. Несмотря на все повышавшуюся точность измерений (первый опыт был проведен в 1881 г., а последний – в 1963 г.), данного явления обнаружить не удалось. Это заставило усомниться в существовании эфира.

Последовательное применение теории Максвелла к другим движущимся средам приводило к выводам о неабсолютности пространства и времени. Однако убежденность в их абсолютности была так велика, что ученые удивлялись своим выводам, называли их странными и отказывались от них. Именно так поступили X. Лоренц и А. Пуанкаре, чьи работы завершают до-эйнштейновский период развития физики. Речь идет об электронной теории Лоренца, а также о его знаменитых уравнениях, переведенных на язык четырехмерного пространства-времени Пуанкаре, которыми позже воспользовался А. Эйнштейн в своей теории относительности.

Принимая законы электродинамики  в качестве основных законов физической реальности, Эйнштейн ввел в электромагнитную картину мира идею относительности  пространства и времени. Тем самым  было устранено противоречие между пониманием континуальных (полевых) представлений о материи и ньютоновской концепцией абсолютного пространства и времени.

Тем не менее, об этих мелких неприятностях физики предпочитали не думать. Они считали, что как  никогда близки к решению основной задачи науки – получению абсолютной истины, раскрытию всех тайн окружающего мира. Это позволило такому известному физику, как Г. Кирхгоф, в 80-х годах XIX в. заявить, что в физике не осталось ничего неизвестного и неоткрытого.

Но даже создание теории относительности  не могло спасти электромагнитной картины  мира. С конца XIX в. обнаруживалось все  больше непримиримых противоречий между  электромагнитной картиной и фактами, что и послужило основанием для  второй глобальной научной революции, которая разрушила не только существующую картину мира, но и все здание классической науки. В ходе этой революции  начала складываться современная наука и новая квантово-релятивистская картина мира.

Концепции современного естествознания

 Лекция 9. Электромагнитная  картина мира (ЭМКМ)

1. Основные экспериментальные  законы электромагнетизма

2. Теория электромагнитного  поля Максвелла

3. Электронная теория Лоренца 

1. Основные экспериментальные  законы электромагнетизма.

Электрические и магнитные  явления были известны человечеству с древности. Само понятие «электрические явления» восходит к Древней Греции (вспомните: два куска янтаря («электрон»), потертые тряпочкой, отталкиваются друг от друга, притягивают мелкие предметы…). Впоследствии было установлено, что существует как бы два вида электричества: положительное и отрицательное.

Что касается магнетизма, то свойства некоторых тел притягивать  другие тела были известны еще в  далекой древности, их назвали магнитами. Свойство свободного магнита устанавливаться в направлении «Север-Юг» уже во II в. до н.э. использовалось в Древнем Китае во время путешествий. Первое же в Европе опытное исследование магнита было проведено во Франции в 13 в. В результате было установлено наличие у магнита двух полюсов. В 1600 г. Гильбертом была выдвинута гипотеза о том, что Земля представляет собой большой магнит: эти и обусловлена возможность определения направления с помощью компаса.

18-й век, ознаменовавшийся  становлением МКМ, фактически положил начало и систематическим исследованиям электрических явлений. Так было установлено, что одноименные заряды отталкиваются, появился простейший прибор – электроскоп. В середине 18 в. была установлена электрическая природа молнии (исследования Б. Франклина, М. Ломоносова, Г. Рихмана, причем заслуги Франклина следует отметить особо: он является изобретателем молниеотвода; считается, что именно Франклин предложил обозначения "+" и "–" для зарядов).

 

В 1759 г. английский естествоиспытатель Р. Симмер сделал заключение о том, что в обычном состоянии любое тело содержит равное количество разноименных зарядов, взаимно нейтрализующих друг друга. При электризации происходит их перераспределение.

В конце 19-го, начале 20-го века опытным путем было установлено, что электрический заряд состоит  из целого числа элементарных зарядов е=1,6×10-19 Кл. Это наименьший существующий в природе заряд. В 1897 г. Дж. Томсоном была открыта и наименьшая устойчивая частица, являющаяся носителем элементарного отрицательного заряда (электрон, имеющий массу moe=9,1×10-31). Таким образом, электрический заряд является дискретным, т.е. состоящим из отдельных элементарных порций q=± ne, где n – целое число.

В результате многочисленных исследований электрических явлений, предпринятых в 18-19 вв. был получен  ряд важнейших законов.

Закон сохранения электрического заряда: в электрически замкнутой  системе сумма зарядов есть величина постоянная. (Т.е. электрические заряды могут возникать и исчезать, но при этом обязательно появляется и исчезает равное количество элементарных зарядов противоположных знаков). Величина заряда не зависит от его  скорости.

Закон взаимодействия точечных зарядов, или закон Кулона:

, где e - относительная диэлектрическая проницаемость среды (в вакууме e = 1). Силы Кулона существенны до расстояний порядка 10-15м (нижний предел). На меньших расстояниях начинают действовать ядерные силы (т.н. сильное взаимодействие). Что касается верхнего предела, то он стремится к :.

Исследование взаимодействия зарядов, проводившееся в 19 в. замечательно еще и тем, что вместе с ним в науку вошло понятие поля. Начало этому было положено в работах М. Фарадея. Поле неподвижных зарядов получило название электростатического. Электрический заряд, находясь в пространстве, искажает его свойства, т.е. создает поле. Силовой характеристикой электростатического поля является его напряженность  . Электростатическое поле является потенциальным. Его энергетической характеристикой служит потенциал j.

Открытие Эрстеда. Природа  магнетизма оставалась неясной до конца 19 в., а электрические и магнитные  явления рассматривались независимо друг от друга, пока в 1820 г. датский физик Х. Эрстед не открыл магнитное поле у проводника с током. Так была установлена связь электричества и магнетизма. Силовой характеристикой магнитного поля является напряженность . В отличие от незамкнутых линий электрического поля силовые линии магнитного поля замкнуты, т.е. оно является вихревым.

Электродинамика. В течение  сентября 1820 г. французский физик, химик  и математик А.М. Ампер разрабатывает новый раздел науки об электричестве – электродинамику.

Информация о работе Электромагнитная картина мира