Эволюция Вселенной

Автор: Пользователь скрыл имя, 11 Мая 2012 в 16:48, контрольная работа

Описание работы

Проблема рождения Вселенной — извечная философская проблема, которая уже несколько веков стала научной, физико-математической проблемой. Рождение Вселенной — это не только философская и научная физико-космологическая проблема: рождение Вселенной — проблема уникального человеческого мышления и бытия. Поэтому она и была фундаментальным объектом пристального внимания мифологии и религии.

Содержание

1. Теории происхождения Вселенной 3
1.1. Вселенная А. Фридмана 3
1.2. Большой взрыв горячей Вселенной Гамова 5
2. Эволюция Вселенной 13
2.1. Большой взрыв: инфляционная модель 13
2.2. Первые секунды Вселенной 14
2.3. От первых минут Вселенной до образования звезд и галактик 15
2.4. Образование тяжелых химических элементов 16
3. Модели будущего Вселенной 17
3.1. Теория Большого разрыва 19
Список использованной литературы 22

Работа содержит 1 файл

Эволюция Вселенной. Отраднова.docx

— 129.15 Кб (Скачать)
    1. От  первых минут Вселенной до образования  звезд и галактик

 

Методом математического моделирования  астрофизикам удалось воспроизвести  детали ядерных процессов, происходивших  в первые минуты существования Вселенной.

 

Согласно полученным результатам, в конце первой секунды температура достигала 1010 К. При такой высокой температуре сложные ядра существовать не могут. Тогда все пространство было заполнено хаотически движущимися протонами и нейтронами вперемешку с электронами, нейтрино и фотонами. Ранняя Вселенная расширялась чрезвычайно быстро и по прошествии еще минуты температура упала на два порядка, а спустя еще несколько минут стала ниже уровня, при котором возможны ядерные реакции. В этот относительно короткий (буквально несколько минут) промежуток времени протоны и нейтроны могли объединяться, образуя сложные ядра.

В тот период основной ядерной реакцией было слияние протонов и нейтронов  с образованием ядер гелия, каждое из которых состоит из двух протонов и двух нейтронов. Поскольку протоны  немного легче нейтронов, они  присутствовали в несколько большем  количестве и по завершении синтеза гелия часть протонов оставалась свободной. Образовавшаяся плазма состояла примерно на 10% из ядер гелия и на 90 % из ядер водорода (протонов). Эти цифры соответствуют наблюдаемому содержанию названных элементов в современной Вселенной.

Великое счастье для нас, что  в первичном веществе был избыток  протонов над нейтронами. Благодаря  ему остались во Вселенной несвязанные  протоны, и впоследствии образовался  водород, без которого не светило  бы Солнце, не было бы воды, не могла  возникнуть жизнь. Не было бы жизни, не было бы и человечества. Так наше существование и сама возможность познания Вселенной прямо определяется отдаленным прошлым, начальными моментами Вселенной.

После стадии термоядерных реакций  температура вещества была еще настолько  высока, что оно находилось в состоянии  плазмы еще сотни тысяч лет, вплоть до периода рекомбинации (Т ≈ 4000 К), когда ядра присоединяли электроны  и превращались в нейтральные  атомы. Первыми образовались атомы  гелия и водорода. Как полагают, из этих первичных водорода и гелия, находившихся в газообразном состоянии, сформировались первые звезды и галактики.

Когда размеры Вселенной были примерно в 100 раз меньше, чем в настоящую  эпоху, из зарождавшихся неоднородностей  газообразного водорода и гелия возникли газовые сгустки — протогалактические сгущения. Постепенно они фрагментировались, в них образовывались меньшие сгустки вещества. Из таких сгустков разной массы, имевших определенный вращательный момент, постепенно сформировались звезды и галактики. Расширение Вселенной определило разлет галактик, которые сами практически не расширяются.

    1. Образование тяжелых химических элементов

 

Таким образом, согласно современным  космологическим представлениям, атомы существовали не всегда: они являются реликтами физических процессов, происходивших в глубинах Вселенной задолго до образовании Земли. Атомы — это «ископаемые» космоса. Первооснову космического вещества составляли водород и гелий; элементов среднего и тяжелого веса космическое вещество практически не содержало. Такие элементы — это «зола» ядерных «костров», пылающих в недрах звезд.

Как мы уже отмечали, ядро звезды представляет собой термоядерный реактор, в котором горючим служат в основном ядра водорода (протоны). Огромная температура заставляет протоны преодолевать электростатическое отталкивание и соударяться друг с другом. При соударении протоны сближаются до радиуса сильного ядерного взаимодействия и могут слиться в ядро (синтез). Правда, ядро, состоящее из двух протонов, неустойчиво. Но если один из протонов (в результате слабого взаимодействия) превратится в нейтрон, то образуется устойчивое ядро дейтерия. Такая реакция высвобождает значительную энергию, способствующую поддержанию в недрах звезды высокой температуры. Последующие реакции синтеза приводят к превращению дейтерия в гелий, образованию углерода, а затем и все более сложных ядер. По мере исчерпания запасов ядерного горючего звезды ее внутренняя структура представлена слоями различных химических элементов, каждый из которых отражает различные стадии ядерного синтеза. Так на протяжении своей «жизни» звезда постепенно превращается из смеси первичного водорода и гелия в хранилище тяжелых химических элементов.

На заключительном этапе эволюции такой звезды ядерные реакции уже не могут поддерживать необходимые значения температуры и давления, которые обеспечивают ее устойчивость. Неустойчивость звездной массы постепенно нарастает. В результате гравитация, выйдя из-под контроля, вызывает мгновенное сжатие звезды. Но внутреннее давление противостоит сжатию и приводит к выбросу гигантской энергии: внешние слои звезды буквально сдуваются в окружающее пространство, разбрасывая тяжелые элементы по просторам галактики. Подобный выброс обычно называют взрывом сверхновой. Каждый взрыв сверхновой обогащает галактику тяжелыми элементами, из которых впоследствии и могут образоваться планетные системы, где возможны зарождение и эволюция жизни.

За всю историю развития нашей  Галактики в ней вспыхнуло  примерно один миллиард сверхновых звезд!

  1. Модели  будущего Вселенной

Каково же будущее Вселенной? Многие выдающиеся ученые ХХ века неоднократно задавались этим вопросом.

В 1917г. А. Эйнштейн выступил с гипотезой о конечной, но безграничной Вселенной. Суть данной гипотезы была в следующем: предположим, что вещество, составляющее планеты, звезды и звездные системы, равномерно рассеяно по всему мировому пространству. Тем самым мы допускаем, что Вселенная всюду однородна и к тому же изотропна, то есть во всех направлениях имеет одинаковые свойства. Будем считать, что средняя плотность вещества во Вселенной выше так называемой критической плотности. Если все эти требования соблюдены, мировое пространство, как это доказал Эйнштейн, замкнуто и представляет собой четырехмерную сферу. Объем такой Вселенной может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе возможно облететь всю замкнутую Вселенную, двигаясь все время в одном и том же направлении. Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная по объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная по Эйнштейну, содержит хотя и большое, но все-таки конечное число звезд и звездных систем, а поэтому к ней фотометрический и гравитационный парадоксы просто неприменимы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна - такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.

Пять лет спустя, в 1922 г., советский физик Александр Фридман  на основании строгих расчетов показал, что Вселенная Эйнштейна никак не может быть стационарной, неизменной, как это считал Эйнштейн. Вселенная непременно должна расширяться, причем речь идет о расширении самого пространства, то есть об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Идея Фридмана поначалу показалась Эйнштейну слишком смелой и необоснованной. Он даже заподозрил ошибку в вычислениях. Но, ознакомившись с ними, он публично признал, что мы живем в расширяющейся Вселенной.

Из расчетов Фридмана вытекали три возможных следствия:

  1. Вселенная и ее пространство расширяются с течением времени;
  2. Вселенная сжимается;
  3. во Вселенной чередуются через большие промежутки времени циклы сжатия и расширения.

Доказательства в пользу модели расширяющейся Вселенной были получены в 1926 г., когда американский астроном Э. Хаббл открыл при исследовании спектров далеких галактик (существование которых было доказано в 1923 г. тем же Хабблом) красное смещение спектральных линий (смещение линий к красному концу спектра), что было истолковано как следствие эффекта Доплера (изменение частоты колебаний или длины волн из-за движения источника излучения и наблюдателя по отношению друг к другу) - удаление этих галактик друг от друга со скоростью, которая возрастает с расстоянием. По последним измерениям, это увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек. После этого открытия вывод Фридмана о нестационарности Вселенной получил подтверждение и в космологии утвердилась модель расширяющейся Вселенной.

Наблюдаемое нами разбегание галактик есть следствие расширения всего пространства замкнутой конечной Вселенной. При таком расширении пространства все расстояния во Вселенной увеличиваются подобно тому, как растут расстояния между пылинками на поверхности раздувающегося мыльного пузыря. Каждую из таких пылинок, как и каждую из галактик, можно с полным правом считать центром расширения.

Дальнейшее развитие модель расширяющейся Вселенной получила в послевоенные годы и особенно в  последние десятилетия благодаря исследованиям известных отечественных космологов Зельдовича и Новикова. Уточнены величины, характеризующие скорость расширения Вселенной, рассмотрены различные варианты моделей Вселенной в зависимости от средней плотности вещества в мировом пространстве, достаточно подробно намечен ход эволюции Вселенной от момента начала ее расширения.

Какое же будущее ждет нашу Вселенную? Мы уже упоминали, что расчеты Фридмана допускали три варианта развития событий. По какому из них идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлетающегося вещества. Это отношение можно свести к отношению плотности вещества во Вселенной к критической плотности вещества, которую мы уже упоминали.

Если кинетическая энергия  разлета вещества преобладает над  гравитационной энергией, препятствующей разлету, то силы тяготения не остановят  разбегания галактик и расширение Вселенной носит необратимый характер. Это выражается условием

(где р - плотность вещества  во Вселенной, рк  - критическая плотность вещества). Этот вариант динамичной модели Вселенной называют «открытой Вселенной».

Если же преобладает гравитационное взаимодействие, чему соответствует  условие 

то темп расширения со временем замедлится до полной остановки, после  чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности (точечный объем с бесконечно большой плотностью), затем произойдет новый взрыв.

Для наблюдателя сигналом перехода от расширения к сжатию станет смена красного смещения линий химических элементов в спектрах удаленных  галактик на фиолетовое смещение. Такой вариант модели назван «закрытой Вселенной».

В случае, когда силы гравитации точно равны кинетическим силам, то есть когда

расширение не прекратится, но его скорость со временем будет стремиться к нулю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит состояние, которое можно назвать квазистационарным.

Теоретически возможна и  пульсация Вселенной.

Возникает естественный вопрос: какой из трех вариантов реализуется  в нашей Вселенной? Ответ на него остается за наблюдательной астрономией, которая должна оценить современную среднюю плотность вещества во Вселенной и уточнить значение постоянной Хаббла (скорость расширения галактик). Пока надежные оценки этих величин отсутствуют. На основании современных данных создается впечатление, что средняя плотность вещества во Вселенной близка к критическому значению, она либо немного больше, либо немного меньше. Но от этого «немного» зависит будущее Вселенной, правда, весьма отдаленное. Постоянная Хаббла позволяет оценить время, в течение которого продолжается процесс расширения Вселенной. Получается, что оно не меньше 10 млрд. и не более 19 млрд. лет. Наиболее вероятным временем существования расширяющейся Вселенной считают 15 млрд. лет.

Из всех вышеперечисленных  доказательств можно с уверенностью сделать вывод: Вселенная эволюционирует, бурные процессы происходили в прошлом, происходят сейчас и будут происходить в будущем.

    1. Теория Большого разрыва

Наблюдения далеких сверхновых и флуктуаций реликтового излучения с помощью наземных и баллонных экспериментов, а в особенности последние данные эксперимента WMAP показали, что наша Вселенная расширяется ускоренно. Этот факт можно согласовать с теорией, если предположить, что Вселенная в основном заполнена веществом с отрицательным давлением - так называемой темной энергией.

Формально темную энергию  можно описать как вещество с  уравнением состояния, описываемым  одним параметром w=Р/р  ("квинтэссенция"), причем это отношение считается постоянным (в рамках рассматриваемых нами предсказаний "будущего" Вселенной - строго постоянным, а для того, чтобы введение темной энергии имело смысл - постоянным на достаточно длительных интервалах времени). Подобное уравнение состояния при определенных значениях w нам хорошо известно: w=1/3 - это излучение, w=0 - пыль, среда без давления, w=-1 - введенный еще самими Эйнштейном ковариантный  -член. Для того, чтобы расширение Вселенной, заполненной (преимущественно) подобным веществом, ускорялось, должно выполняться условие w<-1/3.

Обычно рассмотрение ограничивают интервалом -1<w<-1/3. Это ограничение  связывают с тем, что из строгого выполнения определения w (как для равновесного состояния, так и для малых возмущений) формально вытекает, что скорость распространения малых возмущений (звука) в квинтэссенции при w<-1 превышает скорость света c, что нарушает принцип причинности. Однако уже предложены несколько вариантов скалярных полей, в которых при выполнении условия w<-1 возмущения распространяются с субсветовыми скоростями. Основное возражение - нарушение причинности - в таких моделях устранено, и теперь мы можем задать сакраментальный вопрос:

Информация о работе Эволюция Вселенной