Клетки живых организмов

Автор: Пользователь скрыл имя, 12 Января 2012 в 21:00, реферат

Описание работы

В данной работе раскрываются основные понятия клеток живых организмов

Содержание

Введение…………………………………………………………………………..3
I. Химический состав клетки……………………………………………………..5
1.1. Атомный состав клетки……………………………………………………….5
1.2. Молекулярный состав клетки………………………………………………...5
II. Строение клетки………………………………………………………………11
2.1. Типы клеточной организации………………………………………………...11
2.2. Строение эукариотической клетки…………………………………………..12
2.3. Сравнение растительной и животной клетки……………………………….17
III. Воспроизведение клеток…………………………………………………….21
3.1. Жизненный (клеточный) цикл……………………………………………….21
3.2. Деление клетки………………………………………………………………..21
Заключение……………………..………………………………………………24
Список литературы……………………………………………………………25

Работа содержит 1 файл

клетки живых организмов.doc

— 601.50 Кб (Скачать)

          Обязательным компонентом клеточного цикла является митотический цикл, включающий подготовку к делению и само деление. В жизненном цикле есть также покоя, когда клетка только исполняет свой функций и избирает свою

дальнейшую  судьбу. Подготовка клетки к делению, или интерфаза, составляет значительную часть митотического цикла. Она состоит из трех подпериодов: постмитотический, или пресинтетический  - G1, синтетический – S и постсинтетический, или премитотический – G2. Период G1 – самый вариабельный по продолжительности. Во время его в клетке активизируются процессы биологического синтеза, в первую очередь структурных и функциональных белков. Клетка растет и готовится к следующему периоду. Период S – главный в митотическом цикле. В делящихся клетках млекопитающих он длится около 6 – 10 ч. В это время клетка продолжает синтезировать РНК, белки, но самое важное осуществляет синтез ДНК. Редупликация ДНК происходит асинхронно. Но к концу S – периода вся ядерная ДНК удваивается, каждая хромосома становится двунитчатой, то есть состоит из двух хроматид – идентичных молекул ДНК. Период G2 относительно короток, в клетках млекопитатающих он составляет около 2 – 5 ч. В это время количество центриолей, митохондрей и пластид удваивается, идут активные метаболические процессы, накапливаются белки и энергия для предстоящего деления. Клетка приступает к делению.

    

2.3. Деление клетки.

 

          Описано три способа деления эукариотических клеток: амитоз (прямое деление), митоз (непрямое деление) и мейоз (редукционное деление).

    

Амитоз.

Амитоз  – относительно редкий и малоизученный  способ деления клетки. Описан он для стареющих и патологически измененных клеток. При амитозе интерфазное ядро делится путем перетяжки, равномерное распределение наследственного материала не обеспечивается. Нередко ядро делится без последующего разделения цитоплазмы и образуются двухъядерные клетки. Клетка, претерпевшая амитоз, в дальнейшим не способна вступать в нормальный митотический цикл. Поэтому амитоз встречается, как правило, в клетках и тканях, обреченных на гибель, например, в клетках зародышевых оболочек млекопитающих, в клетках опухолей.

 Митоз.

  Митоз  (от греч. mitos - нить), кариокинез, непрямое  деление клетки, наиболее

распространённый  способ воспроизведения (репродукции) клеток, обеспечивающий тождественное распределение генетического материала между дочерними клетками и преемственность хромосом в ряду клеточных поколений. Биологическое значение митоза определяется сочетанием в нём удвоения хромосом путём продольного расщепления их и равномерного распределения между дочерними клетками. Началу митоза предшествует период подготовки, включающий накопление энергии, синтез дезоксирибонуклеиновой кислоты (ДНК) и репродукцию центриолей.

          Стадии митоза. Единый процесс митоза обычно подразделяют на 4 стадии: профазу, метафазу, анафазу и телофазу. Препрофаза - синтетическая стадия митоза, соответствующая концу интерфазы, включает удвоение ДНК и синтез материала митотического аппарата. В профазе происходят реорганизация ядра с конденсацией и спирализацией хромосом, разрушение ядерной оболочки и формирование митотического аппарата путём синтеза белков и "сборки" их в ориентированную систему веретена деления клетки.Метафаза заключается в движении хромосом к экваториальной плоскости (метакинез, или прометафаза), формировании экваториальной пластинки ("материнской звезды") и в разъединении хроматид, или сестринских хромосом.Анафаза - стадия расхождения хромосом к полюсам. Анафазное движение связано с удлинением центральных нитей веретена, раздвигающего митотические полюсы, и с укорочением хромосомальных микротрубочек митотического аппарата. Удлинение центральных нитей веретена происходит либо за счёт поляризациит"запасных" макромолекул, достраивающих микротрубочки веретена, либо за счёт дегидратации этой структуры. Укорочение хромосомальных микротрубочек обеспечивается свойствами сократительных белков митотического аппарата, способных к сокращению без утолщения. Телофаза заключается в реконструкции дочерних ядер из хромосом, собравшихся у полюсов, разделении клеточного тела (цитотомия, цитокинез) и окончательном разрушении митотического аппарата с образованием промежуточного тельца. Реконструкция дочерних ядер связана с деспирализацией хромосом, восстановлением ядрышка и ядерной оболочки. Цитотомия осуществляется путём образования клеточной пластинки (в растительной клетке) или путём образования борозды деления (в животной клетке). Механизм цитотомии связывают либо с сокращением желатинизированного кольца цитоплазмы, опоясывающего экватор (гипотеза "сократимого кольца"), либо с расширением поверхности клетки вследствие распрямления петлеобразных белковых цепей (гипотеза "расширения мембран"). Продолжительность митоза зависит от размеров клеток, их плоидности, числа ядер, а также от условий окружающей среды, в частности от температуры. В животных клетках митоз. длится 30-60 мин, в растительных 2-3 часа. Более длительны стадии митоза, связанные с процессами синтеза (препрофаза, профаза, телофаза); самодвижение хромосом (метакинез, анафаза) осуществляется быстро.

Мейоз.

Мейоз (от греч. meiosis - уменьшение), редукционное деление, деления созревания, способ деления клеток, в результате которого происходит уменьшение (редукция) числа хромосом в два раза и одна диплоидная клетка

(содержащая  два набора хромосом) после двух  быстро следующих друг за другом делении даёт начало 4 гаплоидным (содержащим по одному набору хромосом). Восстановление диплоидного числа хромосом происходит в результате оплодотворения мейоза - обязательное звено полового процесса и условие формирования половых клеток (гамет). Биологическое значение мейоза заключается в поддержании постоянства кариотипа в ряду поколений организмов данного вида и обеспечении возможности рекомбинации хромосом и генов при половом процессе.

          Мейоз - один из ключевых механизмов наследственности и наследственной изменчивости. Поведение хромосом при мейозе обеспечивает выполнение основных законов наследственности. Первая фаза мейоза - профаза I, наиболее сложная и длительная (у человека 22,5, у лилии 8-10 суток), подразделяется на 5 стадий. Следующая фаза мейоза - метафаза I, во время которой хиазмы ещё сохраняются; биваленты выстраиваются в средней части веретена деления клетки, ориентируясь центромерами гомологичных хромосом к противоположным полюсам веретена. В анафазе I гомологичные хромосомы с помощью нитей веретена расходятся к полюсам; при этом каждая хромосома пары может отойти к любому из двух полюсов, независимо от расхождения хромосом др. пар. Поэтому число возможных сочетаний при расхождении хромосом равно 2n, где n - число пар хромосом. В отличие от анафазы митоза, центромеры хромосом не расщепляются и продолжают скреплять 2 хроматиды в хромосоме, отходящей к полюсу. В телофазе I у каждого полюса начинается деспирализация хромосом и формирование дочерних ядер и клеток. Далее следует короткая интерфаза без редупликации ДНК - интеркинез, и начинается второе деление мейоза. Профаза II, метафаза

II, анафаза II и телофаза II проходят быстро; при этом в конце метафазы II расщепляются центромеры, и в анафазе II расходятся к полюсам хроматиды каждой хромосомы.  

Заключение 

         Клетка - элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Считается, что все организмы и все составляющие их клетки произошли эволюционным путем от общей преДНКовой клетки. Два основных процесса эволюции - это:

1. случайные  изменения генетической информации, передаваемой от организма к его потомкам;

2. отбор  генетической информации, способствующей  выживанию и размножению своих  носителей.

Эволюционная  теория является центральным принципом  биологии, позволяющим нам осмыслить  ошеломляющее разнообразие живого мира. Естественно, в эволюционном подходе есть свои опасности: большие пробелы в наших знаниях мы заполняем рассуждениями, детали которых могут быть ошибочными. 
         Но, что еще более важно, каждый современный организм содержит информацию о признаках живых организмов в прошлом. В частности, существующие ныне биологические молекулы позволяют судить об эволюционном пути, демонстрируя фундаментальное сходство между наиболее далекими живыми организмами и выявляя некоторые различия между ними.
 
 
 
 
 
 
 

Список  литературы 
 
 

Информация о работе Клетки живых организмов