Концепция естествознания

Автор: Пользователь скрыл имя, 11 Января 2012 в 19:52, контрольная работа

Описание работы

Дело в том, что наука – это не только собрание фактов об электричестве и т.п.
Это одно из наиболее важных духовных движений наших дней.
Наука – это не только совокупность знаний. Науке можно учить, как
увлекательнейшей части человеческой истории – как быстро развивающемуся росту
смелых гипотез, контролируемых экспериментом и критикой.

Содержание

Введение
1. Развитие естествознания в XX.в.
2. Закон всемирного тяготения.
3. Происхождения человека и его самоорганизация.
4. Заключение
5. Список литературы.

Работа содержит 1 файл

ксе.docx

— 63.58 Кб (Скачать)

    Позднее в ходе исследования микромира положение о веществе и поле как самостоятельных независимых друг от друга видах материи было поставлено под сомнение.

Изучая  микрочастицы, ученые столкнулись с  тем, что одни и те же объекты обнаруживали как волновые, так и корпускулярные свойства. Первые исследования в этой области были проведены немецким физиком М. Планком. В процессе исследования теплового излучения он пришел к  выводу, что энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а  лишь в определенных неделимых порциях  – квантах. Сумма энергий этих порций определяется через число  колебаний и универсальную естественную постоянную. Понятие элементарного  кванта в дальнейшем послужило основой  для понимания всех свойств атомной  оболочки и атомного ядра. А.

Эйнштейн  перенес идею квантованного поглощения и отдачи энергии на излучение  вообще и, таким образом, обосновал  новое учение о свете.

Квантовая теория света или фотонная теория Эйнштейна утверждала, что свет есть постоянно распространяющееся в  мировом пространстве волновое явление. Вместе с тем световая энергия  концентрируется в определенных точках, и свет поэтому имеет прерывистую  структуру. Свет можно рассматривать  как поток энергетических квантов  или фотонов. Таким образом, ранее  считавшаяся опровергнутой корпускулярная теория света оказалась тоже отчасти  верной.

    Представления Эйнштейна о квантах света послужили отправным пунктом для теории Нильса Бора и привели к возникновению идеи о «волнах материи». В 1924 г. французских физик Луи де Бройль выдвинул идею о необходимости использовать волновые и корпускулярные представления для описания свойств материи. В 1926 г. австрийский физик Э. Шредингер нашел математическое уравнение, определяющее поведение волн материи. Английский физик Поль Дирак обобщил его. Таким образом, была выдвинута идея о возможности создания единой математической модели материи и энергии. Экспериментальные данные подтвердили существование явлений дифракции атомов, нейтронов, электронов и даже молекул. Признание корпускулярно-волнового дуализма в современной физике стало всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств. Квантово-механическое описание микромира основывается на соотношении неопределенности, установленном немецким физиком В. Гейзенбергом. Принцип соотношения неопределенности утверждает, что для элементарных частиц никогда нельзя установить одновременно оба важнейших параметра классической механики – координату и скорость. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то при этом нарушается ее движение, и наоборот, при точном измерении скорости нельзя определить место расположения частицы. Это связано с тем, что, пользуясь законами макромира, невозможно построить модель явлений микромира. Любая попытка дать четкую картину микрофизических процессов опирается либо на волновое, либо на корпускулярное представление и не дает возможности описать квант, являющийся и частицей, и волной одновременно. Нильс Бор сформулировал это как принцип дополнительности: «Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего». В процессе исследования мы наблюдаем не реальность как таковую, а результат взаимодействия микрообъекта с приборами, одни из которых способны фиксировать волновую, другие – корпускулярную природу элементарных частиц. Обе картины законны, и противоречие между ними снять нельзя. Поэтому корпускулярная и волновая картины должны дополнять одна другую.

Параллельно с исследованиями квантовой природы  энергии велись исследования атомов как структурных единиц материи. В XVIII в. химик Дальтон принял атомный  вес водорода за единицу и сопоставил с ним атомные веса других газов. В XIX в. Д.И. Менделеев построил систему  химических элементов, основанную на их атомном весе. В физике исследования атома начинаются с открытия явления  радиоактивности (самопроизвольного  превращения атомов одних элементов  в атомы других) французскими физиками А. Беккерелем и Пьером и Марией Кюри. Исследование структуры атома началось в 1895 г. с открытия Дж. Томсоном электрона – отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку атом в целом электрически нейтрален, было сделано предположение о наличии в его структуре положительно заряженных частиц. В 1911 г. исследования лаборатории Э. Резерфорда позволили сделать вывод, что атом имеет структуру, напоминающую солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.

    В 1913 г. датский физик Нильс Бор, отталкиваясь от планетарной модели Резерфорда и квантовой концепции энергии, предложил следующую гипотезу строения атома:

  1. В каждом атоме существует несколько стационарных состояний или орбит электронов, двигаясь по которым электрон существует, не излучая.
  2. При переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

Концепция Бора позволяла объяснить устойчивость атомов и излучение ими энергии.

Дальнейшие  исследования показали, что сам электрон не является точкой. Он обладает внутренней структурой, которая может меняться в зависимости от его состояния, поэтому описать структуру атома, исходя из представлений классической механики, нельзя. Вследствие своей  волновой природы электроны и  их заряды как бы распространены по всему атому, но в некоторых местах электронная плотность заряда больше, а в других – меньше. Кривая, связывающая  точки максимальной плотности, формально  называется орбитой электрона. Процессы в атоме в принципе нельзя наглядно представить в виде механистических  моделей по аналогии с событиями  в макромире.

Дальнейшее  развитие представлений о структуре  материи было связано с исследованиями элементарных частиц, то есть частиц, входящих в состав атома. Сейчас их известно более 350. Первоначально термин «элементарный» означал, что эти частицы являются далее неразложимыми. Сейчас уже  не подлежит сомнению, что эти частицы  имеют ту или иную структуру.

Элементарные  частицы участвуют во всех видах  известных взаимодействий:

  1. Сильное взаимодействие. Происходит на уровне атомных ядер. Оно представляет собой взаимное притяжение и отталкивание их составных частей. Оно действует на расстоянии 10-13 см.
  2. Электромагнитное взаимодействие. Примерно в 1000 раз слабее сильного, но значительно более дальнодействующее. Взаимодействие такого типа свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является фотон – квант электромагнитного поля. Электромагнитное взаимодействие соединяет атомные ядра и электроны в атоме и атомы в молекуле.
  3. Слабое взаимодействие. Действует на расстоянии порядка 10-15 – 10-22 см. Связано главным образом с распадом частиц, например, с превращением нейтрона в протон, электрон и антинейтрино.
  4. Гравитационное взаимодействие. Самое слабое. В теории элементарных частиц почти не учитывается.Но при сверхбольших энергиях тяжелые частицы могут создавать вокруг себя заметное гравитационное поле. Гравитационные взаимодействия имеют решающее значение в космических масштабах. Радиус их действия неограничен.

    Комплекс представлений о макро и микроэволюции, сложившийся к середине ХХ в., стали называть синтетической теорией эволюции.

Генетика  – это биологическая наука  о наследственности и изменчивости организмов и методах управления ими. Она является научной основой  для разработки методов селекции, то есть создания новых пород животных, видов растений и т.д.

Основными направлениями исследований ученых-генетиков  в ХХ в. стали:

  1. Изучение элементарных материальных структур, которые являются носителями генетической информации, единицами наследственности.
  2. Исследование механизмов и закономерностей передачи генетической информации.
  3. Изучение механизмов реализации генетической информации, ее претворение в конкретные признаки и свойства организма.
  4. Выяснение причин и механизмов изменения генетической информации на разных этапах развития организма.

     Крупнейшие открытия современной генетики связаны с установлением способности генов к перестройке – мутирование. Мутации могут быть полезными, вредными или нейтральными. Одним из результатов мутаций может быть появление организма нового вида – мутанта. Причины мутаций (изменения генной информации) до конца не выяснены. Однако установлены основные факторы, вызывающие мутации, так называемые мутагены. Известно, например, что мутации могут вызываться некоторыми общими условиями, в которых находится организм: его питанием, температурным режимом и т.д. или действием экстремальных факторов, например, некоторых химических веществ или радиоактивных элементов. Одним из наиболее опасных видов мутагенов являются вирусы. 
 
 
 
 

 

  1. Закон всемирного тяготения.

    Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации, или силами всемирного тяготения. Сила всемирного тяготения проявляется в Космосе, Солнечной системе и на Земле.

    Ньютон обобщил законы движения небесных тел и выяснил, что сила F равна: массы взаимодействующих тел, R — расстояние между ними, G — коэффициент пропорциональности, который называется гравитационной постоянной. Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

    В результате закон всемирного тяготения звучит так: между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки. Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если m1 = m2 = 1 кг, R = 1 м, то G = F, т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м. Численное значение:  Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

    Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести. Под действием этой силы все тела приобретают ускорение свободного падения. В соответствии со вторым законом Ньютона g = Ft*m следовательно, Ft = mg. Сила тяжести всегда направлена к центру Земли. В зависимости от высоты h над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с2.

    В технике и быту широко используется понятие веса тела. Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете. Вес тела обозначается Р. Единица веса — Н, так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

    Рассмотрим случай, когда тело вместе с опорой не движется. В этом случае сила реакции опоры, а следовательно, и вес тела равен силе тяжести: Р = N = mg. В случае движения тела вертикально вверх вместе с опорой с ускорением по второму закону Ньютона можно записать mg + N = та.  В проекции на ось OX: -mg + N = та, отсюда N = m(g + a). Следовательно, при движении вертикально вверх с ускорением вес тела увеличивается и находится по формуле Р = m(g + a).

    Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой. Действие перегрузки испытывают на себе космонавты как при взлете космической ракеты, так и при торможении корабля при входе в плотные слои атмосферы. Испытывают перегрузки и летчики при выполнении фигур высшего пилотажа, и водители автомобилей при резком торможении. Если тело движется вниз по вертикали, то с помощью аналогичных рассуждений получаем   т. е. вес при движении по вертикали с ускорением будет меньше силы тяжести. Если тело свободно падает, то в этом случае P = (g- g)m = 0. Состояние тела, в котором его вес равен нулю, называют невесомостью. Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, поэтому в корабле наблюдается состояние невесомости. 
 
 
 
 
 
 
 
 
 
 
 
 

  1. Происхождения человека и его  самоорганизация.

    Проблема происхождения человека и определение специфики его строения и эволюции изучаются в антропологии (от греч. anthropos — человек) - процесс историко-эволюционного формирования физического типа человека, первоначального развития его трудовой деятельности, речи. Антропогенез изучает происхождение человека, становление его как вида в процессе историко-эволюционного развития. Учение об антропогенезе - раздел антропологии, центральная проблема эволюционной антропологии, при изучении которой используются данные ряда естественных и общественных наук о человеке и Земле.

    В основе представлений об антропогенезе лежит симиальная (от лат. simia - обезьяна) гипотеза происхождения человека от высокоразвитых обезьян третичного периода, впервые подробно разработанная и аргументированная Ч. Дарвином (1871). Впоследствии было получено много новых данных в подтверждение этой гипотезы, особенно палеонтологических и этологических (связанных с изучением поведения приматов), а также из области сравнительной биохимии и иммунологии, молекулярной биологии и генетики.

Информация о работе Концепция естествознания