Космологические модели Вселенной

Автор: Пользователь скрыл имя, 08 Мая 2012 в 20:57, реферат

Описание работы

Вселенную в целом изучает КОСМОЛОГИЯ (т.е. наука о Космосе). Слово это тоже не случайно. Хотя сейчас космосом называют все, находящееся за пределами атмосферы Земли, не так было в Древней Греции. Космос тогда принимался как «порядок», «гармония», в противоположность хаосу - «беспорядку». Таким образом, космология, в основе своей, как и подобает науке, открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого.

Содержание

Введение……………………………………………………….……………2
Основная часть……………………………………………………………..3
Заключение…………………………………………………...…………….32
Литература…………………………………………………………………33

Работа содержит 1 файл

ксе.docx

— 75.08 Кб (Скачать)

Тем неожиданнее  прозвучал вывод из второго начала термодинамики, открытого в середине XIX в. англичанином Кельвином и немецким физиком Клаузиусом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое, будучи предоставлено себе, стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся и Вселенная превратится в мрачное замерзшее кладбище. Наступит тепловая смерть Вселенной.

Встать  на позицию Клаузиуса — значит признать, что Вселенная имела когда-то начало и неизбежно будет иметь конец. Действительно, если бы в прошлом Вселенная существовала вечно, то в ней давно наступило бы состояние тепловой смерти, а так как этого нет, то, по убеждению Клаузиуса и многих других его современников, Вселенная была сотворена сравнительно недавно, а в будущем, если не случится какого-нибудь чуда, Вселенную ждет тепловая смерть.

Таким образом, концепция тепловой смерти Вселенной, термодинамический парадокс подставили под сомнение вопрос о  вечности Вселенной во времени. Три  космологических парадокса заставили  ученых усомниться в классической космологической  модели Вселенной, побудили их к поискам  новых непротиворечивых моделей.

Релятивистская  модель Вселенной

Новая модель Вселенной была создана в 1917 г. А. Эйнштейном. Ее основу составила  релятивистская теория тяготения —  общая теория относительности. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и  времени, однако сохранил принцип стационарности, неизменности Вселенной во времени  и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней  гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели, пространство однородно  и изотропно, т.е. во всех направлениях имеет одинаковые свойства, материя  распределена в нем равномерно, время  бесконечно, а его течение не влияет на свойства Вселенной. На основании  проведенных расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную  сферу. При этом не следует представлять себе данную модель Вселенной в виде обычной сферы. Сферическое пространство есть сфера, но сфера четырехмерная, не поддающаяся наглядному представлению. По аналогии можно сделать вывод, что объем такого пространства конечен, как конечна поверхность любого шара, ее можно выразить конечным числом квадратных сантиметров. Поверхность всякой четырехмерной сферы также выражается конечным числом кубометров. Такое сферическое пространство не имеет границ, и в этом смысле оно безгранично. Летя в таком пространстве в одном направлении, мы в конце концов вернемся в исходную точку. Но в то же время муха, ползущая по поверхности шара, нигде не найдет границ и преград, запрещающих ей двигаться в любом избранном направлении. В этом смысле поверхность любого шара безгранична, хотя и конечна, т.е. безграничность и бесконечность — это разные понятия.

Итак, из расчетов Эйнштейна следовало, что  наш мир является четырехмерной  сферой. Объем такой Вселенной  может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе можно облететь всю замкнутую Вселенную, двигаясь все время в одном направлении. Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная по объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная Эйнштейна содержит хотя и большое, но все же конечное число звезд и звездных систем, а поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в  своей космологической теории ориентировался на привычную классическую мировоззренческую  установку статичности мира. Его  более привлекал гармоничный  и устойчивый мир, нежели мир противоречивый и неустойчивый.

Модель  расширяющейся Вселенной

Модель  Вселенной Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительности. Это связано с тем, что именно тяготение определяет взаимодействие масс на больших расстояниях. Поэтому  теоретическим ядром современной  космологии выступает теория тяготения  — общая теория относительности. Эйнштейн допускал в своей космологической  модели наличие некой гипотетической отталкивающей силы, которая должна была обеспечить стационарность, неизменность Вселенной. Однако последующее развитие естествознания внесло существенные коррективы в это представление.

Пять  лет спустя, в 1922 г., советский физик  и математик А. Фридман на основе строгих расчетов показал, что Вселенная  Эйнштейна не может быть стационарной, неизменной. При этом Фридман опирался на сформулированный им космологический  принцип, который строится на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной: мы можем проводить наблюдения в любой из них и везде увидим изотропную Вселенную.

Фридман на основе космологического принципа доказал, что уравнения Эйнштейна  имеют и другие, нестационарные решения, согласно которым Вселенная может  либо расширяться, либо сжиматься. При  этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный  пузырь, у которого и радиус, и  площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной  носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э. Хаббл обнаружил эффект «красного  смещения» спектральных линий (смещение линий к красному концу спектра). Это было истолковано как следствие  эффекта Допплера — изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. «Красное смещение» было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием. Согласно последним измерениям увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек.

В результате своих наблюдений Хаббл обосновал  представление, что Вселенная —  это мир галактик, что наша Галактика  — не единственная в ней, что существует множество галактик, разделенных  между собой огромными расстояниями. Вместе с тем Хаббл пришел к выводу, что межгалактические расстояния не остаются постоянными, а увеличиваются. Таким образом, в естествознании появилась концепция расширяющейся Вселенной.

Какое же будущее ждет нашу Вселенную? Фридман  предложил три модели развития Вселенной.

В первой модели Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, замыкаясь на себя, образуя сферу.

Во  второй модели Вселенная расширялась бесконечно, а пространство искривлено как поверхность седла и при этом бесконечно.

В третьей модели Фридмана пространство плоское и тоже бесконечное.

По какому из этих трех вариантов идет эволюция Вселенной, зависит от отношения  гравитационной энергии к кинетической энергии разлетающегося вещества.

Если  кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной  будет носить необратимый характер. Этот вариант динамичной модели Вселенной  называют открытой Вселенной.

Если  же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной  в исходное состояние сингулярности (точечный объем с бесконечно большой  плотностью). Такой вариант модели назван осциллирующей, или закрытой, Вселенной.

В граничном  случае, когда силы гравитации точно  равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит состояние, которое можно назвать квазистационарным. Теоретически возможна и пульсация Вселенной.

Наблюдаемое нами разбегание галактик есть следствие  расширения пространства замкнутой  конечной Вселенной. При таком расширении пространства все расстояния во Вселенной  увеличиваются подобно тому, как  растут расстояния между пылинками  на поверхности раздувающегося мыльного пузыря. Каждую из таких пылинок, как  и каждую из галактик, можно с  полным правом считать центром расширения. Когда Э. Хаббл показал, что далекие  галактики разбегаются друг от друга  со все возрастающей скоростью, был сделан однозначный вывод о том, что наша Вселенная расширяется. Но расширяющаяся Вселенная — это изменяющаяся Вселенная, мир со всей своей историей, имеющий начало и конец. Постоянная Хаббла позволяет оценить время, в течение которого продолжается процесс расширения Вселенной. Получается, что оно не менее 10 млрд. и не более 19 млрд. лет. Наиболее вероятным временем существования расширяющейся Вселенной считают 15 млрд. лет. Таков приблизительный возраст нашей Вселенной.

Происхождение Вселенной — концепция  Большого взрыва

Представление о развитии Вселенной закономерно  привело постановке проблемы начала эволюции (рождения) Вселенной и  ее конца (смерти). В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причин и процесса рождения самой Вселенной. Из всей совокупности современных космологических теорий только теория Большого взрыва Г. Гамова смогла к настоящему времени удовлетворительно объяснить почти все факты, связанные с этой проблемой. Основные черты модели Большого взрыва сохранились до сих пор, хотя и были позже дополнены теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейн-хардтом и дополненной советским физиком А.Д. Линде.

В 1948 г. выдающийся американский физик русского происхождения Г. Гамов выдвинул предположение, что физическая Вселенная  образовалась в результате гигантского  взрыва, происшедшего примерно 15 млрд. лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном крохотном  сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был и вовсе равен  нулю, а ее плотность равна бесконечности. Это начальное состояние называется сингулярностью — точечный объем с бесконечной плотностью. Известные законы физики в сингулярности не работают. В этом состоянии теряют смысл понятия пространства и времени, поэтому бессмысленно спрашивать, где находилась эта точка. Также современная наука ничего не может сказать о причинах появления такого состояния.

Тем не менее, согласно принципу неопределенности Гейзенберга вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры. По некоторым подсчетам, если все вещество наблюдаемой Вселенной, которое оценивается примерно в 1061 г, сжать до плотности 1094 г/см3, то оно займет объем около 10-33 см3. Ни в какой электронный микроскоп разглядеть ее было бы невозможно. Долгое время ничего нельзя было сказать о причинах Большого взрыва и переходе Вселенной к расширению. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

«Начало»  Вселенной

Основная  идея концепции Большого взрыва состоит  в том, что Вселенная на ранних стадиях возникновения имела  неустойчивое вакуумоподобное состояние с большой плотностью энергии. Эта энергия возникла из квантового излучения, т.е. как бы из ничего. Дело в том, что в физическом вакууме отсутствуют фиксируемые частицы, поля и волны, но это не безжизненная пустота. В вакууме имеются виртуальные частицы, которые рождаются, имеют мимолетное бытие и тут же исчезают. Поэтому вакуум «кипит» виртуальными частицами и насыщен сложными взаимодействиями между ними. Причем, энергия, заключенная в вакууме, располагается как бы на его разных этажах, т.е. имеется феномен разностей энергетических уровней вакуума.

Пока  вакуум находится в равновесном  состоянии, в нем существуют лишь виртуальные (призрачные) частицы, которые  занимают в долг у вакуума энергию  на короткий промежуток времени, чтобы  родиться, и быстро возвращают позаимствованную энергию, чтобы исчезнуть. Когда  же вакуум по какой-либо причине в  некоторой исходной точке (сингулярности) возбудился и вышел из состояния  равновесия, то виртуальные частицы  стали захватывать энергию без  отдачи и превращались в реальные частицы. В конце концов в определенной точке пространства образовалось огромное множество реальных частиц вместе со связанной ими энергией. Когда же возбужденный вакуум разрушился, то высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Экстремальные условия «начала», когда даже пространство-время было деформировано, предполагают, что и вакуум находился в особом состоянии, которое называют «ложным» вакуумом. Оно характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества. В этом состоянии вещества в нем могут возникать сильнейшие напряжения, отрицательные давления, равносильные гравитационному отталкиванию такой величины, что оно вызвало безудержное и стремительное расширение Вселенной — Большой взрыв. Это и было первотолчком, «началом» нашего мира.

Информация о работе Космологические модели Вселенной