Материалы 21 века

Автор: Пользователь скрыл имя, 12 Декабря 2011 в 14:31, курсовая работа

Описание работы

Данная работа посвящена теме «Стекло. Стекловолокно».
Эту тему я выбрала не случайно, ведь город, в котором я родилась, издавна был знаменит своим стеклодувным ремеслом и заслуженно считается одним из центров изготовления ёлочных игрушек в России.

Содержание

Основная часть.
Стекло:
историческая справка, возникновение стекла как материала;
художественное стекло;
понятие «стекло», его свойства;
состав, виды стекла и применение;
технология производства;
Стекловолокно:
виды стекловолокна;
технология производства;
свойства и функции;
применение.
3. Клин – город стекольный.
Заключение.
Список используемой литературы.

Работа содержит 1 файл

МГ-09-2 Александрова П. Стекло и стекловолокно.doc

— 337.50 Кб (Скачать)

    Стекло - твёрдый аморфный материал, полученный в процессе переохлаждения расплава. Для стекла  характерна обратимость перехода из жидкого состояния в метастабильное, неустойчивое стеклообразное состояние. При определённых температурных условиях кристаллизуется. Стекло не плавится при нагревании подобно кристаллическим телам, а размягчается, последовательно переходя из твёрдого состояния в пластическое, а затем в жидкое. По агрегатному состоянию стекло занимает промежуточное положение между жидким и кристаллическим веществами. Упругие свойства делают стекло сходным с твёрдыми кристаллическими телами, а отсутствие кристаллографической симметрии (и связанная с этим изотропность) приближает к жидким. Склонность к образованию стекла характерна для многих веществ (селен, сера, силикаты, бораты и др.).

    Физико-химические свойства стекла.

    Свойства  стекла зависят от сочетания входящих в их состав компонентов.

      Наиболее характерное свойство  стекла  — прозрачность (светопрозрачность оконного стекла 83—90%, а оптического стекла — до 99,95%).

    Стекло  типично хрупкое тело, весьма чувствительное к механическим воздействиям, особенно ударным, однако сопротивление сжатию у стекла такое же, как у чугуна.

    Для повышения прочности стекло подвергают упрочнению (закалка, ионный обмен, при  котором на поверхности стекла происходит замена ионов, например натрия, на ионы лития или калия, химическая и термохимическая обработка и др.), что ослабляет действие поверхностных микротрещин (трещины Гриффитса), возникающих на поверхности стекла в результате воздействия окружающей среды (температура, влажность и пр.) и являющихся концентраторами напряжений, и позволяет повысить прочность стекла в 4—50 раз. Обычно для устранения влияния микротрещин применяют стравливание или сжатие поверхностного слоя. При стравливании дефектный слой растворяется плавиковой кислотой, а на обнажившийся бездефектный слой наносится защитная плёнка, например из полимеров. При закалке поверхностный слой сжимается, что препятствует раскрытию трещин. Плотность стекла 2200—8000 кг/м3, твёрдость по минералогической шкале 4,5—7,5, микротвёрдость 4—10 Гн/м2, модуль упругости 50—85 Гн/м2. Предел прочности стекла при сжатии равен 0,5—2 Гн/м2, при изгибе 30—90 Гн/м2, при ударном изгибе 1,5—2 Гн/м2.

    Теплоёмкость  стекла 0,3—1 кДж/кг - К, термостойкость 80°— 1000 °С, температурный коэффициент расширения (0,56—12) 109 1/К. Коэффициент теплопроводности  стекла мало зависит от его химического состава и равен 0,7—1,3 Вт/(м. К), коэффициент преломления 1,4—2,2, электрическая проводимость 10-8—10-18 Ом -1. см1, диэлектрическая проницаемость 3,8—16.

    Все типы стекол, независимо от их химического  состава и температурной области затвердевания, обладают специфическими свойствами, которые отличают их от кристаллов и жидкостей.

    Стекла рентгеноаморфны вследствие неупорядоченного атомного строения. В структуре стекла отсутствует дальний порядок, т. е. систематическая повторяемость элементарных объемов структуры, характерная для кристаллических веществ.

    Стекла изотропны, если они однородны по составу, свободны от напряжений и дефектов. Изотропия свойств стекол, как и других аморфных сред, обусловлена отсутствием направленной в пространстве ориентации частиц. Оптическая анизотропия может возникнуть в стекле в результате действия растягивающих или сжимающих напряжений (явления оптической анизотропии).

    Температурный интервал стеклования. Стекла не имеют определенной температуры затвердевания или плавления. Оба эти процесса происходят постепенно в некотором температурном интервале. При охлаждении расплав переходит из жидкого в пластическое состояние, и только затем—в твердое (процесс стеклования). Наоборот, при нагревании стекло переходит из твердого в пластическое состояние, при более высоких температурах—в жидкое (размягчение стекла).

    Температурный интервал, в котором происходит процесс  стеклования или обратный ему процесс размягчения, называется интервалом стеклования и ограничен двумя температурами: со стороны высоких температур Тf, со стороны низких температур Tg (температура стеклования) (рис.1).

    При температуре Tg стекло обладает свойствами твердого упругого тела с хрупким разрушением. Температура Tf является границей пластического и жидкого состояний. При температуре Тf из стекломассы уже удается вытягивать тонкие нити.

    Понятия о Tg и Tf были введены Тамманом. Подстрочные индексы «g» и «f» являются первыми буквами слов «Glass» — стекло и «Flissigkeit» — жидкость. 

      1— твердое состояние; 11 — пластическое; III — жидкое (расплав                                                                                 

Рис. 1. Зависимость свойства Р и его производных в интервале стеклования (по Тамману)

                                               

      Рис.2. Влияние условий переохлаждения на мольный объем      вещества в расплавленном, кристаллическом и стеклообразном состояниях.

    Процессы  размягчения стекла или затвердевания стекломассы являются однофазными в отличие от плавления кристаллических веществ или кристаллизации расплавов. При размягчении стекла в интервале стеклования отсутствует жидкая фаза.

    Свойства  стекол по характеру изменения в  интервале стеклования делят на три группы. К первой группе относятся свойства Р, характеризующие функцию состояния веществ (внутренняя энергия Е, мольный объем V, энтальпия Н, энтропия S) и кинетические свойства (вязкость), удельное сопротивление r). Свойства первой группы с повышением температуры изменяются постепенно. В интервале стеклования кривая имеет закругленный перегиб (рис. 3.1, кривая 1), соответствующий наиболее резкому изменению свойств первой группы. Свойства второй группы представляют собой первую производную по температуре dP/dT от свойств первой группы (коэффициенты термического расширения—линейный и объемный, теплоемкость). Кривая 2 характеризует температурный ход зависимости свойств второй группы. Можно видеть, что в интервале стеклования первая производная dP/dT имеет точку перегиба Tg. Третья группа включает свойства (теплопроводность, диэлектрические потери), которые являются вторыми производными по температуре от функций состояния (кривая 3). Температурная зависимость d2P/dT2 имеет максимум или минимум в точке Tw.

    Характер  изменения свойств стекол при  нагревании резко отличается от температурной  зависимости свойств кристаллических  веществ. Для последних нет деления  свойств на группы, характер температурных  кривых однотипен: незначительное линейное изменение свойств до температуры плавления, резкое скачкообразное изменение свойств при температуре плавления. Температуры Tg, Tw, Tf лежат всегда ниже температуры плавления соответствующего кристалла.

Значения  температур Tg, Tf, а также интервал стеклования (Tg—Tf) зависят от состава стекла.

    Температуры Tg и Tf принадлежат к числу характеристических точек на температурной кривой вязкости. Температуре стеклования Tg соответствует вязкость стекломассы, равная 10123 Па-с, а температуре Tf—вязкость 108 Па-с.

Из (рис.2) можно видеть, что объем стекла в отличие от объема кристаллического вещества не является константой для данного состава. Он зависит от температурно-временных условий получения стекла.

    Изотермическая  выдержка закаленного стекла при температуре (T<Tg) будет сопровождаться уменьшением объема по прямой в связи со стремлением структуры достичь равновесного состояния при температуре Т (см. рис.2). Время структурных перестроек в области низких температур исключительно велико.

    Неравновесное состояние структуры стекла находит  свое выражение в явлениях термического последействия (так называемое, «вековое повышение точки нуля» и «депрессия точки нуля»), широко известных при эксплуатации точных стеклянных шкал и термометров.

    1.4. Состав и технологии стёкол

1.4.1. Стеклообразующие вещества  

К  стеклообразующим веществам относятся: 
Оксиды: SiO2 B2O3 P2O5 TeO2 GeO2

Фториды: AlF3

и др.

1.4.2. Виды стекол:

В зависимости от основного используемого стеклообразующего вещества, стекла бывают:

  • оксидными (силикатные, кварцевое, германатные, фосфатные, боратные);
  • фторидными;
  • сульфидными и т. д.

    Базовый метод получения силикатного  стекла заключается в плавлении  смеси кварцевого песка (SiO2), соды (Na2CO3) и извести (CaO). В результате получается химический комплекс с составом Na2O*CaO*6SiO2.

    Кварцевое стекло получают плавлением кремнезёмистого сырья высокой чистоты (обычно кварцит, горный хрусталь), его химическая формула — SiO2. Кварцевое стекло может быть также природного происхождения (см. выше —кластофульгуриты), образующееся при попадании молнии в залежи кварцевого песка (этот факт лежит в основе одной из исторических версий происхождения технологии).

    Кварцевое стекло характеризуется весьма малым  коэффициентом температурного расширения и потому его иногда используют в  качестве материала для деталей точной механики, размеры которых не должны меняться при изменении температуры. Примером служит использование кварцевого стекла в точных маятниковых часах.

    Согласно  определению Комиссии по терминологии АН СССР (1932г.) «стеклом называются все  аморфные тела, получаемые путем переохлаждения расплава независимо от их состава и температурной области затвердевания и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым».

    Из  определения следует, что в стеклообразном состоянии могут находиться вещества, принадлежащие к разным классам химических соединений.

    Органические  стекла представляют собой органические полимеры-полиакрилаты, поликарбонаты, полистирол, сополимеры винилхлорида с метилметакрилатом, — находящиеся  в стеклообразном состоянии. Наибольшее практическое применение нашли стекла на основе полиметил-метакрилата. По своей технологии, механизму твердения и строению органические стекла существенно отличаются от неорганических и составляют особый объект изучения.

    Многовековая  история стеклоделия связана  с изготовлением силикатных стекол, основывающихся на системе Na2O—СаО—SiO2. Только во второй половине XX в. было показано, что натрий-кальций-силикатные стекла составляют небольшую часть безграничного мира неорганических стекол. 

    В качестве главной составной части  в стекле содержится 70—75 % двуокиси кремния (SiO2), получаемой из кварцевого песка при условии соответствующей грануляции и свободы от всяких загрязнений. Венецианцы для этого применяли чистый песок из реки По или даже завозили его из Истрии, тогда как богемские стеклоделы получали песок из чистого кварца.

    Второй  компонент — окись кальция (CaO) — делает стекло химически стойким и усиливает его блеск. На стекло она идёт в виде извести. Древние египтяне получали её из щебня морских раковин, а в Средние века она приготовлялась из золы деревьев или морских водорослей, так как известняк в качестве сырья для приготовления стекла был ещё не известен. Первым подмешивать к стеклянной массе мел, как тогда назывался известняк, стали богемские стеклоделы в XVII веке.

Информация о работе Материалы 21 века