Планета Земля

Автор: Пользователь скрыл имя, 06 Февраля 2011 в 12:21, реферат

Описание работы

В состав первичной атмосферы входили пары воды, метан, аммиак, углекислый газ, водород, инертные газы. В состав вторичной атмосферы – метан, аммиак, углекислый газ, водород. Азот современной атмосферы образовался в результате распада аммиака и выделения газообразного азота при вулканической деятельности. О том, как происходило насыщение атмосферы кислородом, нет единого мнения.

Содержание

Происхождение Земли…………………………………………………………….3
Геохимическая эволюция Земли………………………………………………….4
Геологическая структура земного шара…………………………………………6
Гидро – и атмосфера………………………………………………………………7
Биосфера и её роль в геохимических процессах………………………………..9
Климат Земли…………………………………………………………………….10
Список литературы………………………………………………………………….13

Работа содержит 1 файл

Планета Земля.doc

— 72.00 Кб (Скачать)
 
 
 
 
 
 
 
 
 

Р Е Ф Е Р А  Т

П Л А Н Е Т  А     З  Е М Л Я 
 
 
 
 
 
 
 
 
 
 
 
 
 

г. Искитим 2009

Содержание

  1. Происхождение Земли…………………………………………………………….3
  2. Геохимическая эволюция Земли………………………………………………….4
  3. Геологическая структура земного шара…………………………………………6
  4. Гидро – и атмосфера………………………………………………………………7
  5. Биосфера и её роль в геохимических процессах………………………………..9
  6. Климат Земли…………………………………………………………………….10

    Список  литературы………………………………………………………………….13 
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

     
  1. Происхождение Земли

              Первые гипотезы относительно происхождения Земли, имеющие под собой научную основу, появились в ХVІІ веке. Одну из теорий сформулировал немецкий философ Иммануил Кант в 1755 году. Согласно этой теории, материалом для возникновения Солнечной системы послужила свободно рассеянная в космосе первичная материя. Частицы, из которых состояла материя, хаотично перемещались, сталкивались друг с другом, и соединялась под действием силы притяжения. Так образовалось Солнце, которое тоже притягивало частицы – более легкие и мелкие, вследствие чего образовались планеты, в том числе и Земля. С ростом космогонических представлений стали появляться и другие теории – небулярная теория Лапласа, теория «катастроф», теория Шмидта и проч.

              Согласно современным представлениям, Земля образовалась из газопылевого облака около 4,5 миллиардов лет тому назад. Солнце было очень горячим, поэтому из области формирования Земли испарились все летучие вещества, например, водород и гелий. Гравитационные силы способствовали тому, чтобы материя газопылевого облака аккумулировалась на Земле, находящейся на стадии зарождения. Вначале температура на Земле была очень высокой, поэтому вся материя находилась в жидком состоянии. Вследствие гравитационной дифференциации плотные элементы опустились ближе к центру планеты, а более легкие остались на поверхности. Через некоторое время температура на Земле снизилась, начался процесс затвердения, при этом вода осталась в жидком состоянии.

            В состав первичной атмосферы входили пары воды, метан, аммиак, углекислый газ, водород, инертные газы. В состав вторичной атмосферы – метан, аммиак, углекислый газ, водород. Азот современной атмосферы образовался в результате распада аммиака и выделения газообразного азота при вулканической деятельности. О том, как происходило насыщение атмосферы кислородом, нет единого мнения. Считается, что основная роль в образовании кислорода принадлежит фотосинтезу, он мог образоваться вследствие фотолиза воды под воздействием ультрафиолетовых лучей, а также при извержении базальтов в глубинных впадинах океана. 

     
  1. Геохимическая эволюция Земли

              Геохимическая история Земли делится на два неравных этапа: докембрий, занимающий около 5/6 всей геологической истории (около 3 млрд. лет), и фанерозой, охватывающий последние 570 млн. лет. Докембрий делится на архей и протерозой. Фанерозой включает палеозойскую, мезозойскую и кайнозойскую эры. История земной коры материков в значительной степени определяется развитием её геосинклинальных поясов, состоящих из отдельных геосинклинальных систем. Эволюция всех геосинклинальных систем начинается длительным геосинклинальным этапом заложения и развития глубоких субпараллельных прогибов, или геосинклиналей, разделённых поднятиями (геоантиклиналями) и обычно заполненных морем, в водах которого отлагались мощные толщи осадочных и вулканических пород. Затем геосинклинальная система претерпевала интенсивную складчатость, которая преобразовывала её в складчатую систему (складчатое сооружение), вступала в стадию горообразования (орогенеза) и высоко вздымалась в целом в виде горной страны. С концом орогенного этапа складчатая система теряла былую тектоническую подвижность, её рельеф постепенно выравнивался денудацией, и она превращалась в фундамент молодой платформы, внутри которой впоследствии обособлялись участки, перекрывавшиеся вновь отложенным платформенным чехлом (плиты). Другой, собственно альпийский цикл развития наиболее типичен для Средиземноморского геосинклинического пояса, протянувшегося из Южной Европы через Гималаи в Индонезию, и менее типично проявился в некоторых геосинклинальных системах Тихоокеанского побережья. Его начало приходится на ранний мезозой, а окончание - на разные отрезки последней, кайнозойской эры геологического прошлого. Периодический характер вертикальных движений в течение тектонического цикла (преимущественно опускание в начале и преимущественно поднятие в конце цикла) каждый раз приводил к соответствующим изменениям рельефа поверхности, к смене трансгрессий и регрессий моря. Те же периодические движения влияли на характер отлагавшихся осадочных пород, а также на климат, который испытывал периодические изменения. Уже в докембрий тёплые эпохи прерывались ледниковыми. В палеозое оледенение охватывало по временам Бразилию, Южную Африку, Индию и Австралию. Последнее оледенение (в Северном полушарии) было в антропогене. Первая половина каждого тектонического цикла проходила на материках в общем под знаком наступания моря, которое заливало и на платформах, и в геосинклиналях всё большую площадь. В каледонском цикле наступание моря развивалось в течение кембрийского и ордовикского периодов, в герцинском цикле - в течение второй половины девонского периода и начале каменноугольного, в мезозойском -- в течение триасового периода и начале юрского, в альпийском -- в течение юрского и мелового периодов, в кайнозойском -- в течение палеогенового периода. В морях сначала преобладало отложение песчано-глинистых осадков, которые, по мере увеличения площади морей, уступали своё место известнякам. Благодаря поступательной эволюции животного и растительного мира от цикла к циклу менялись породообразующие организмы, менялся и характер воздействия организмов на горные породы. Например, отсутствие соответствующего растительного покрова на материках в раннем палеозое явилось причиной отсутствия в каледонском цикле залежей угля, которые характерны для герцинского и более поздних циклов. Преобразованием тектонических подвижных зон материковой коры в платформы не ограничиваются закономерности её развития.

     Процессы  тектонической активизации неоднократно на протяжении истории охватывали платформы. Особенно ярко они проявились в конце неогена, когда на платформах снова поднялись высокие горы, образовавшиеся ещё в конце каледонского или герцинского циклов и с тех пор выровненные (например, Тянь-Шань, Алтай. Саяны и многие другие); тогда же на платформах образовались крупные системы грабенов -- рифтов, указывающие на процесс глубокого раскалывания земной коры (Байкальская система рифтов, Восточно-Африканская зона разломов). Процесс сокращения площади, занятой геосинклиналями, и соответственно роста площади платформ подчинялся некоторой пространственной закономерности: образовавшиеся в среднем протерозое на месте архейских геосинклиналей первые устойчивые платформы в дальнейшем играли роль «очагов стабилизации», которые с периферии обрастали всё более молодыми платформами. В результате к началу мезозоя геосинклинальные условия сохранились в двух узких, но протяжённых поясах - Тихоокеанском и Средиземноморском. Под влиянием взаимодействия внутренних и внешних сил природа земной поверхности изменялась на протяжении всей геологической истории. Неоднократно изменялся рельеф, очертания материков и океанов, климат, растительность и животный мир. Развитие органического мира было тесно связано с основными этапами развития З., среди которых выделяют длительные периоды относительно спокойного развития и периоды сравнительно кратковременных перестроек земной коры, сопровождаемых изменениями физико-географических условий на её поверхности. 

     
  1. Геологическая структура земного  шара

     Оболочка  земного шара это образования со сложной геологической структурой, сформировавшейся в результате длительного развития. Их особенности определяются прежде всего различиями строения внешней оболочки Земли. У самой поверхности залегает "чехол" осадочных пород: глин, песков, песчаников, известняков. Под ними - породы типа гранитов, а еще глубже - породы, близкие по свойствам к базальту. Все три слоя вместе и составляют земную кору. Различают два крайних типа земной коры: материковую - мощностью в 35-80 км, причем у нее хорошо развиты и "чехол" осадочных пород, и гранитный и базальтовый слои, и океаническую кору мощностью не более 5-10 км. Два верхних слоя у нее совершенно отсутствуют. Геологические границы материков шире, чем их современные физико-географические очертания, так как шельфы и часть материкового склона имеют континентальное строение земной коры. Данные геофизики позволяют говорить о том, что строение верхней мантии под материками и океанами тоже имеет свои отличия. Образование материков и океанов - этих крупнейших элементов рельефа земного шара, обусловлено тектоническими, космическими и планетарными процессами. Очевидно, материки и океаны наметились еще в догеологическую стадию развития Земли. В строении поверхности Земли огромную роль играют глубинные разломы, рассекающие всю земную кору и нередко уходящие в верхнюю мантию. От более мелких разломов, которые наблюдаются близ поверхности Земли, в пределах осадочной оболочки, их отличает не только огромная глубина, но и длительность развития: некоторые глубинные разломы существуют несколько периодов и даже эр, т. е. сотни миллионов лет. Такие разломы разделяют земную кору на отдельные глыбы, образуя как бы мозаику из блоков различной величины. Обычно эти блоки хорошо выражены в рельефе. Нередко вдоль глубинных разломов вытянуты цепочки вулканов или по ним в земную кору внедряются глубинные магматические породы. С глубинными разломами бывают связаны прямолинейные очертания континентов, а их склоны совпадают с зоной дробления земной коры. Есть существенные различия в строении океанических побережий. Посмотрите на глобус: западные берега Тихого, Индийского и Атлантического океанов изрезаны речными долинами и расчленены сильнее, чем восточные, а там, где основные линейные структуры (горные хребты и тектонические разломы) совпадают с направлением берега, побережья изрезаны меньше. Очертания материков усложняются деятельностью крупных рек, отлагающих в прибрежной зоне огромное количество обломочного материала: за его счет местами наращивается суша. 

     
  1. Гидро – и атмосфера

            Согласно геофизическим данным, в состав современной Земли входят следующие слои (оболочки):

     1) Атмосфера - внешняя газовая оболочка, ограниченная снизу твердой или  жидкой подстилающей поверхностью.

     2) Гидросфера (в основном - Мировой  океан) - водная оболочка, частично покрывающая твердую Землю.      Атмосфера. С точки зрения теории климата характеризуется, главным образом, массой и химическим составом. В настоящее время земная атмосфера содержит 5.3·103 триллионов т воздуха - около одной миллионной доли массы всей Земли. Давление воздуха на уровне моря в среднем равно 1.013 кг/см2, а плотность - 1.3·10-3 г/см3. С высотой плотность воздуха быстро убывает, так что три четверти массы атмосферы находятся ниже 10 км, 90% - ниже 15 км, 99% - ниже 30 км, 99.9% - ниже 50 км. Сухой воздух состоит из 78.08% азота, 20.95% кислорода, 0.93% аргона, около 0.03% углекислого газа и малых количеств благородных газов и водорода. Важную роль в формировании погоды и климата играют так называемые термодинамически активные примеси (ТАП) - переменные составные части атмосферы, способные влиять на термодинамическое состояние воздуха и на распределение по атмосфере притоков тепла. Водяной пар и особенно облачность резко влияют на потоки коротковолнового и длинноволнового излучения в атмосфере, внося, в частности, большой вклад в парниковый эффект, т. е. в способность атмосферы пропускать солнечную радиацию до подстилающей поверхности, но поглощать собственное тепловое излучение подстилающей поверхности и нижележащих атмосферных слоев (благодаря этому эффекту температура в атмосфере растет с глубиной, и ее нижние слои оказываются теплыми).

             Гидросфера. Ее масса - 1.46·106 триллионов т жидкой воды и льда - в 275 раз больше массы атмосферы, но составляет лишь одну четырехтысячную долю массы всей Земли. Около 94°/0 массы гидросферы составляют соленые воды Мирового океана, из оставшихся 6% гидросферы три четверти приходятся на подземные воды и четверть - на ледники Антарктиды и Гренландии (их растепление повысило бы уровень Мирового океана на 80 м); на остальные ледники и озера приходится очень малая доля массы гидросферы. Рассмотрим главную часть гидросферы - Мировой океан. Он покрывает 70.8% поверхности земного шара и имеет среднюю глубину 3795 м. Окаймляющая континенты мелководная зона океанов с глубинами до 200 м (материковая отмель, или шельф), как правило, узка - она занимает только 7.6% площади Мирового океана. Далее идет довольно крутой материковый склон с глубинами 200-3000 м - 15.2% площади океана. Ложе океана (абиссаль) с глубинами >3 км занимает 77.1% площади океана; половина ложа имеет глубины 4-5 км, а глубины >6 км (глубоководные желобы, так называемая ультраабиссаль) составляют менее одного процента площади океана. Доли площади, приходящиеся на разные глубины и высоты, даются гипсографической кривой поверхности твердой Земли (рис. 3). Наибольшая глубина Мирового океана обнаружена экспедицией Института океанологии АН СССР на знаменитом научно-исследовательском судне «Витязь». Она находится в Марианском желобе и равняется 11 034 м. Мировой океан несколько условно делят на четыре части: Тихий океан (52.8% массы и 49.8% площади Мирового океана, средняя глубина 4028 м), Атлантический океан (24.7% массы и 25.9% площади, средняя глубина 3627 м), Индийский океан (21.3% массы и 20.7% площади, средняя глубина 3897 м) и Северный Ледовитый океан (1.2% массы и 3.6% площади, средняя глубина 1296 м). Здесь к океанам отнесены соответствующие секторы Антарктики, а также прибрежные моря, составляющие в сумме 3% массы и 10% площади Мирового океана; Средиземное, Черное и Каспийское моря условно отнесены к Атлантическому океану.  

     
  1. Биосфера  и её роль в геохимических  процессах

            Важнейшая особенность Земли как планеты - наличие биосферы - оболочки, состав, строение и энергетика которой в существенных чертах обусловлены деятельностью живых организмов. Границы её понимаются различно, в зависимости от подхода к её изучению. Наиболее полно значение этой оболочки выявлено в учении о биосфере, созданном В. И. Вернадским. Биосфера включает в себя не только область приповерхностного сосредоточения современной жизни, но и части др. геосфер, в которые проникает живое вещество и которые преобразованы в результате его былой деятельности. Таким образом биосфера объединяет не только живые организмы, но и всю среду их современного и былого обитания. По В. И. Вернадскому, эта «сфера жизни» объединена биогенной миграцией атомов. Живое вещество реально проявляется в виде отдельных (дискретных) живых организмов, различающихся составом, строением, образом жизни и принадлежащих к различным видам. На Земле существует (по разным данным) от 1,2 до 2 млн. видов животных и растений. Из них на долю растений приходится примерно 1/3 общего числа видов. Из животных по числу описанных видов первое место занимают насекомые (около 750 000), второе - моллюски (по разным данным, от 40 000 до 100 000), затем идут позвоночные (60 000--70 000 видов). Из растений на первом месте - покрытосеменные (по разным данным, от 150 000 до 300 000 видов), затем грибы (от 70 000 до 100 000 видов). Числом видов растений и животных измеряется богатство флоры и фауны. Однако обилие видов ещё не означает обилия особей, так же как и бедность флоры и фауны видами может сопровождаться чрезвычайным обилием особей. Биосфера как область наблюдаемой на Земле максимальной изменчивости условий и состояния вещества включает твёрдое, жидкое и газообразное вещество и имеет мозаичное строение, в основе которого лежат различные биогеоценозы - комплексы живых организмов и неорганических компонентов, взаимосвязанных обменом веществ и энергии. Это - единая организованная система, способная к саморегулированию. Вещество биосферы неоднородно по структуре; оно делится на живое (организмы), биогенное (созданное живыми организмами), биокосное (результат совместного действия биологических и неорганических процессов) и косное (неорганическое). Геологическая роль живого вещества проявляется в ряде биогеохимических функций. Через посредство живых организмов (главным образом через фотосинтез) солнечная энергия вводится в физико-химические процессы земной коры, а затем перераспределяется через питание, дыхание и размножение организмов, вовлекая в процесс большие массы косного вещества. Живые организмы распространены во всех доступных им областях Земли, близких к областям термодинамической устойчивости жидкой воды (за исключением, по-видимому, областей перегретых подземных вод), и в ряде областей с температурой ниже 00С. Условия среды, в которых возможно проявление жизнедеятельности организмов, поле устойчивости жизни - расширяется с возрастанием её приспособляемости в ходе эволюции. Границы биосферы расширялись в процессе эволюции Земли не только за счёт прямой приспособляемости организмов к более суровым условиям, но и за счёт создания защитных оболочек, внутри которых возникают особые условия, отличающиеся от условий окружающей среды. Этот процесс наибольший размах принял с появлением человека, который способен существенно расширять сферу своего обитания. 

Информация о работе Планета Земля