Современная наука о происхождении Вселенной

Автор: Пользователь скрыл имя, 11 Октября 2011 в 20:45, курсовая работа

Описание работы

Казалось бы, вопрос о границах между философией и естествознанием давно решен. Неоднократно подчеркивалось, что современная философия не представляет собой натурфилософию или "науку наук", не может и не должна диктовать естественнонаучные представления и законы. Однако такие совершенно справедливые положения не помешали, к сожалению, в свое время отрицать "с философских позиций" представление о генах и многое другое. В известной степени это касается также космологии и внегалактической астрономии в целом, успехи которых в нашем веке заслуженно признаются блестящими.

Содержание

ВВЕДЕНИЕ 2

1. СТАНОВЛЕНИЕ КОСМОЛОГИИ И КОСМОГОНИИ 8

1.1. Становление классической космологии 8

1.2. Становление классической космогонии 14

2. КОСМОЛОГИЧЕСКИЕ ПАРАДОКСЫ 21

2.1. Фотометрический парадокс 21

2.2. Гравитационный парадокс 22

2.3. Термодинамический парадокс 22

2.4. Неевклидовы геометрии 25

3. ТЕОРИИ ХХ В. О ПРОИСХОЖДЕНИИ ВСЕЛЕННОЙ 29

3.1. Саморазвивающаяся вселенная А.А. Фридмана 29

3.2. Открытие красного смещения Э. Хаббла 30

3.3. Концепция "Большого взрыва" 30

3.4. Модель "Горячей вселенной" 30

3.5. Модель "Холодной вселенной" 31

3.6. Открытие реликтового излучения 32

4. СОВРЕМЕННАЯ НАУКА О ПРОИСХОЖДЕНИИ ВСЕЛЕННОЙ 34

4.1. Тепловая история или сценарий образования крупномасштабной структуры Вселенной 34

4.2. Теория о раздувающейся Вселенной 36

4.3. Обоснование отсутствия начальной сингулярности в развитии Вселенной 37

4.4. Теория о пульсирующей Вселенной 38

ЗАКЛЮЧЕНИЕ 41

Cписок использованной литературы 43

Работа содержит 1 файл

ВВЕДЕНИЕ.docx

— 86.15 Кб (Скачать)

4.1. Тепловая история  или сценарий образования  крупномасштабной  структуры Вселенной

     На  нынешней стадии развития физической космологии на передний план выдвинулась  задача создания тепловой истории Вселенной, в особенности сценария образования  крупномасштабной структуры Вселенной. Последние теоретические изыскания  физиков велись в направлении  следующей фундаментальной идеи: в основе всех известных типов  физических взаимодействий лежит одно универсальное взаимодействие; электромагнитное, слабое, сильное и гравитационное взаимодействия являются различными гранями  единого взаимодействия, расщепляющегося  по мере понижения уровня энергии  соответствующих физических процессов. Иначе говоря, при очень высоких  температурах (превышающих определенные критические значения) различные  типы физических взаимодействий начинают объединяться, а на пределе все  четыре типа взаимодействия сводятся к одному единственному протовзаимодействию, называемому «Великим синтезом» [14].

       Согласно квантовой теории то, что остается после удаления  частиц материи (к примеру,  из какого-либо закрытого сосуда  с помощью вакуумного насоса), вовсе не является пустым в  буквальном смысле слова, как  это считала классическая физика. Хотя вакуум не содержит обычных  частиц, он насыщен «полуживыми», так называемыми виртуальными  тельцами. Чтобы их превратить  в настоящие частицы материи,  достаточно возбудить вакуум, например, воздействовать на него электромагнитным  полем, создаваемым внесенными  в него заряженными частицами.

     Судя  по данным астрономии физическая величина космологической постоянной, фигурирующей в эйнштейновских уравнениях тяготения, очень мала, возможно близка к нулю. Но даже будучи столь ничтожной, она может вызвать очень большие космологические последствия. Развитие квантовой теории поля привело к еще более интересным выводам. Оказалось, что космологическая постоянная является функцией от энергии, в частности зависит от температуры. При сверхвысоких температурах, господствовавших на самых ранних фазах развития космической материи, космологическая постоянная могла быть очень большой, а главное, положительной по знаку. Говоря другими словами, в далеком прошлом вакуум мог находиться в чрезвычайно необычном физическом состоянии, характеризуемом наличием мощных сил отталкивания. Именно эти силы и послужили физической причиной «Большого Взрыва» и последующего быстрого расширения Вселенной [15].

     Рассмотрение  причин и последствий космологического «Большого Взрыва» было бы не полным без еще одного физического понятия. Речь идет о так называемом фазовом  переходе (превращении), т.е. качественном превращении вещества, сопровождающимся резкой сменой одного его состояния  другим. Советские ученые-физики Д.А. Киржниц и А.Д. Линде первыми обратили внимание на то, что в начальной фазе становления Вселенной, когда космическая материя находилась в сверхгорячем, но уже остывающем состоянии, могли происходить аналогичные физические процессы (фазовые переходы).

     Дальнейшее  изучение космологических следствий  фазовых переходов с нарушенной симметрией привело к новым теоретическим  открытиям и обобщениям. Среди  них обнаружение ранее неизвестной  эпохи в саморазвитии Вселенной. Оказалось, что в ходе космологического фазового перехода она могла достичь  состояния чрезвычайно быстрого расширения, при котором ее размеры  увеличились во много раз, а плотность  вещества оставалась практически неизменной. Исходным же состоянием, давшим начало раздувающейся Вселенной, считается  гравитационный вакуум. Резкие изменения, сопутствующие процессу космологического расширения пространства характеризуются  фантастическими цифрами. Так предполагается, что вся наблюдаемая Вселенная возникла из единственного вакуумного пузыря размером меньше 10 в минус 33 степени. Вакуумный пузырь, из которого образовалась наша Вселенная, обладал массой, равной всего-навсего одной стотысячной доле грамма [16].

4.2. Теория о раздувающейся  Вселенной

     В настоящее время еще нет всесторонне  проверенной и признанной всеми  теории происхождения крупномасштабной структуры Вселенной, хотя ученые значительно  продвинулись в понимании естественных путей ее формирования и эволюции. С 1981 года началась разработка физической теории раздувающейся (инфляционной) Вселенной. К настоящему времени физиками предложено несколько вариантов данной теории. Предполагается, что эволюция Вселенной, начавшаяся с грандиозного общекосмического катаклизма, именуемого «Большим Взрывом», в последующем сопровождалась неоднократной сменой режима расширения [17].

       Согласно предположениям ученых, спустя 10 в минус сорок третьей  степени секунд после «Большого  Взрыва» плотность сверхгорячей космической материи была очень высока (10 в 94 степени грамм/см кубический). Высока была и плотность вакуума, хотя по порядку величины она была гораздо меньше плотности обычной материи, а поэтому гравитационный эффект первобытной физической «пустоты» был незаметен. Однако в холе расширения Вселенной плотность и температура вещества падали, тогда как плотность вакуума оставалась неизменной. Это обстоятельство привело к резкому изменению физической ситуации уже спустя 10 в минус 35 степени секунды после «Большого Взрыва». Плотность вакуума сначала сравнивается, а затем, через несколько сверхмгновений космического времени, становится больше ее. Тогда и дает о себе знать гравитационный эффект вакуума - его силы отталкивания вновь берут верх над силами тяготения обычной материи, после чего Вселенная начинает расширяться в чрезвычайно быстром темпе (раздувается) и за бесконечно малую долю секунды достигает огромных размеров. Однако этот процесс ограничен во времени и пространстве. Вселенная, подобно любому расширяющемуся газу, сначала быстро остывает и уже в районе 10 в минус 33 степени секунды после «Большого Взрыва» сильно переохлаждается. В результате этого общевселенческого «похолодания» Вселенная от одной фаза переходит в другую. Речь идет о фазовом переходе первого рода - скачкообразном изменении внутренней структуры космической материи и всех связанных с ней физических свойств и характеристик. На завершающей стадии этого космического фазового перехода весь энергетический запас вакуума превращается в тепловую энергию обычной материи, а в итоге вселенческая плазма вновь подогревается до первоначальной температуры, и соответственно происходит смена режима ее расширения [18].

4.3. Обоснование отсутствия  начальной сингулярности  в развитии Вселенной

     Не  менее интересен, а в глобальной перспективе более важен другой результат новейших теоретических  изысканий – принципиальная возможность  избегания начальной сингулярности  в ее физическом смысле. Речь идет о  совершенно новом физическом взгляде  на проблему происхождения Вселенной.

     Оказалось, что вопреки некоторым недавним теоретическим прогнозам (о том, что начальную сингулярность  не удастся избежать и при квантовом  обобщении общей теории относительности) существуют определенные микрофизические  факторы, которые могут препятствовать беспредельному сжатию вещества под  действием сил тяготения.

     Еще в конце тридцатых годов было теоретически обнаружено, что звезды с массой, превышающей массу Солнца более чем в три раза, на последнем  этапе своей эволюции неудержимо сжимаются до сингуляторного состояния. Последнее в отличие от сингулярности космологического типа, именуемой фридмановской, называется шварцшильдовским (по имени немецкого астронома, впервые рассмотревшего астрофизические следствия энштейновской теории тяготения). Но с чисто физической точки зрения оба типа сингулярности идентичны. Формально они отличаются тем, что первая сингулярность является начальным состоянием эволюции вещества, тогда как вторая - конечным.

       Согласно недавним теоретическим  представлениям гравитационный  коллапс должен завершиться сжатием  вещества буквально «в точку» - до состояния бесконечной плотности.  По новейшим же физическим  представлениям коллапс можно  остановить где-то в районе  планковской величины плотности, т.е. на рубеже 10 в 94 степени грамм / см. кубический. Это значит, что Вселенная возобновляет свое расширение не с нуля, а имея геометрически определенный (минимальный) объем и физически приемлемое, регулярное состояние [19].

4.4. Теория о пульсирующей  Вселенной

     Академик  М.А. Марков выдвинул интересный вариант  пульсирующей Вселенной. В логической рамке этой космологической модели старые теоретические трудности, если не решаются окончательно, то, по крайней  мере, освещаются под новым перспективным  углом зрения. Модель основана на гипотезе согласно которой при резком уменьшении расстояния константы всех физических взаимодействий стремятся к нулю. Данное предположение - следствие другого допущения, согласно которому константа гравитационного взаимодействия зависит от степени плотности вещества.

       Согласно теории Маркова, всякий  раз, когда Вселенная из фридмановской стадии (конечное сжатие) переходит в стадию деситтеровскую (начальное расширение), ее физико-геометрические характеристики оказываются одними и теми же. Марков считает, что этого условия вполне достаточно для преодоления классического затруднения на пути физической реализации вечно осциллирующей Вселенной.

     Что же ожидает нашу Вселенную в будущем, если она будет неограниченно  расширяться? О процессе продолжающегося  расширения нашей Вселенной свидетельствуют  почти все данные наблюдений. По мере расширения пространства материя, становится все более разреженной, галактики и их скопления все  более удаляются друг от друга, а  температура фонового излучения  приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся  либо в белых карликов, остывающих до состояния холодных черных карликов, либо в нейтронные звезды или черные дыры. Эра светящегося вещества закончится, и темные массы вещества, элементарные частицы и холодное излучение  будут бессмысленно разлетаться  в непрерывно разряжающейся пустоте.

     Впрочем, черные дыры не останутся без работы. Имея на то достаточно времени, черные дыры поглотят огромное количество вещества вселенной.

       Если теория Хокинга верна, то черные дыры будут продолжать испускать излучение, но черным дырам (с массой равной массе Солнца) потребуется очень длительное время, прежде чем это заметно изменит что-то. Фоновое излучение остынет гораздо раньше, чем черные дыры начнут излучать больше, чем они будут поглощать из этого фонового излучения. Такой момент настанет тогда, когда возраст Вселенной станет примерно в десять миллионов раз больше предполагаемого на сегодня Должно пройти около 10 66 лет, прежде чем черные дыры солнечной массы начнут взрываться, выбрасывая потоки частиц и излучения [20].

     Дж. Берроу из Оксфордского университета и Ф. Типлер из Калифорнийского университета в своих работах нарисовали картину отдаленного будущего неограниченно расширяющейся Вселенной. Даже внутри старой нейтронной звезды сохраняется еще достаточно энергии. Чтобы время от времени сообщать частицам, находящимся вблизи ее поверхности, скорость, превышающую скорость убегания. Предполагается, что в результате этого через достаточно продолжительное время все вещество нейтронной звезды должно испариться. Распадутся и черные дыры, вызвав рождение (в равных пропорциях) частиц и античастиц. По мнению Берроу и Типлера, если запас энергии во Вселенной достаточен только для того, чтобы обеспечить ее неограниченное расширение, то эффект электрического притяжения в электронно-позитронных парах перевесит и гравитационное притяжение и общее расширение Вселенной как целого. За определенное конечное время все электроны проаннигилируют со всеми позитронами. В конечном итоге последней стадии существующей материи окажутся не разлетающиеся холодные темные тела и черные дыры, а безбрежное море разреженного излучения, остывающего до конечной, повсюду одинаковой, температуры.

 

ЗАКЛЮЧЕНИЕ

     Основные  положения классической космологии были сформулированы И.Ньютоном в XVII в. По его мнению, Вселенная бесконечна в пространстве и во времени, иначе говоря, она вечна. Основным законом, управляющим движением небесных тел, является Закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, он играет пассивную роль  «вместилища» для небесных тел. Классическая механика привела к представлениям о стационарности  Вселенной. В ней могут происходить самые разнообразные процессы, но в целом она всегда сохраняется одной и той же.

     В пределах ньютоновских предствлений в XIX столетии обнаружились парадоксы – фотометрический, гравитационный и термодинамический, разрешения которых в рамках классической механики найти не удалось

     Современные космология и космогония основаны на представлениях Общей теории относительности  Эйнштейна о кривизне пространства и замедлении времени. Считается, что  таким способом космологические  парадоксы разрешаются.

     В соответствии с Общей теорией  относительности Вселенная произошла  в результате Большого взрыва безразмерной сингулярной точки, в которой  была сосредоточена вся масса  Будущей Вселенной. С тех пор  Вселенная расширятся, свидетельством чего считается «Красное смещение»  спектров далеких галактик.

     На  самом деле возникновение космологических  парадоксов связано с метафизической идеализацией так называемых «хорошо  установленных» законов природы  и не учетом ряда обстоятельств:

     фотометрический парадокс не учел даже обнаруженного  позже «Красного смещения», преобразующего спектр; гравитационный парадокс не учел  термодиффузионной на уровне эфира природы гравитации, что приводит к гравитационной изоляции звезд; термометрический парадокс не учел возможности концентрации энергии в вихревых образованиях эфира.

     Учет  этих обстоятельств разрешает парадоксы  в рамках представлений классической физики, представлений о вечно  существующей Вселенной, евклидового  пространства и равномерно текущего времени.

     Необходимо  отделить результаты наблюдений и экспериментальных  исследований космоса, которые следует  считать достоверными, от трактовок  и толкований этих данных. Для этого  необходимо возродить материалистическую методологию и пересмотреть все  основные положения, как космологии, так и космогонии.

Информация о работе Современная наука о происхождении Вселенной