Структурные уровни организации материи

Автор: Пользователь скрыл имя, 20 Декабря 2010 в 19:10, контрольная работа

Описание работы

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта. Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение.

Работа содержит 1 файл

ФЕДЕРАЛЬНО АГЕНСТВО ПО ОБРАЗОВАНИЮ2щ.doc

— 96.50 Кб (Скачать)

ФЕДЕРАЛЬНО  АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ 

ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ  ИНСТИТУТ 
 
 
 
 
 
 
 
 

РЕФЕРАТ

по КСЕ  на тему «Структурные уровни организации материи» 
 
 
 
 
 
 
 
 
 
 
 
 

Выполнила:

студент 1 курса 

Проверил: 
 

                                                                                                                                                                                                                                                                                                                                     
 
 
 
 
 

Владимир 2009 г. 
 

Введение

     Естественные  науки, начав изучение материального  мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.  Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение.

   В науке выделяются три уровня строения материи:

  • Макромир мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.
  • Микромир — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от  десяти в минус восьмой степени  до десяти в минус шестнадцатой степени см, а время жизни - от бесконечности до десяти в минус двадцать четвертой степени сек.
  • Мегамир — мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические  закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны. 
 
 
 
 
 
 
 

Структурность и системность  материи

     Важнейшими  атрибутами материи являются структурность  и системность. Они выражают упорядоченность  существования материи и те конкретные формы, в которых она проявляется. Под структурой материи обычно понимается ее строение в микромире, существование в виде молекул, атомов, элементарных частиц и т. д. Это связанно с тем, что человек, являясь микроскопическим существом, привык к соответствующим масштабам, поэтому понятие строения материи ассоциируется, как правило, с микрообъектами. Но если рассматривать материю в целом, то понятие структуры материи будет охватывать также различные макроскопические тела, все космические системы мегамира. С этой точки зрения структура материи проявляется в существовании бесконечного многообразия целостных систем, тесно связанных между собой. Из всего многообразия форм объективной реальности (то есть материи), эмпирически доступной для наблюдения является конечная область материального мира, которая простирается от 10-15 см до 1028 см (около 20 млрд. световых лет), а во времени - до 2*1010  лет. В этих доступных нам масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимосвязанных систем: Метагалактика, отдельная галактика, звездная система, планета, отдельные тела, молекулы, атомы, элементарные частицы.

     Наряду со структурностью неотъемлемым  свойством материи является ее  системность. Система - это внутренне (или внешне) упорядоченное множество взаимосвязанных элементов, определенная целостность, проявляющая себя как нечто единое по отношению к другим объектам  или внешним условиям. Во всех целостных системах связь между элементами является  более устойчивой, упорядоченной и внутренне необходимой, чем связь каждого из элементов с окружающей средой. В неживой природе множество объектов будет целостной системой только в том случае, если энергия связи между ними больше их суммарной кинетической энергии совместно с энергией внешних воздействий, направленных на разрушение системы. В противном случае система не возникнет или распадется. Энергия внутренних связей - это общая энергия, которую нужно было бы приложить последовательно к каждому из элементов, чтобы удалить его из системы на большое расстояние, то есть “растащить” систему. Поскольку эта энергия не возникает из ничего, стабильность и целостность систем оказывается косвенно обусловленной действием закона сохранения энергии.

Долгое  время атом считался конечным пределом делимости материи, а так же тем элементарным “кирпичиком” вещества, из которого сложены все предметы и явления нашего мира. Но уже к началу ХХ в. выяснилось, что это не так. Был открыт электрон, а затем другие элементарные частицы, число которых постоянно возрастает и на сегодняшний день превысило 300 разновидностей. У большинства элементарных частиц есть античастицы, отличающиеся противоположными знаками электрического заряда и магнитного момента: для электронов - позитроны, для протона - антипротон, для нейтрона - антинейтрон и т. д. Все другие свойства античастиц аналогичны свойствам обычных частиц. Из них могут образовываться устойчивые атомные ядра, атомы, молекулы и антивещество, подчиняющееся тем же законам движения, что и обычное вещество. При соприкосновении вещества с антивеществом происходит процесс аннигиляции - превращения частиц и античастиц в фотоны и мезоны больших энергий.

     Можно констатировать, что современная  физика довольно неплохо изучила  процессы, протекающие в микромире,  систематизировав эти знания и представив их в таких теориях, как квантовая механика, квантовая электродинамика, квантовая хромодинамика. Об основах этих теорий, отражающий современный уровень знаний о строении материи, и необходимо поговорить. 
 
 
 
 
 
 
 
 
 
 

                                                                                     Макромир

   Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

Представление о макромире составляют наиболее старый компонент естествознания. Еще в донаучный период сложились определенные представления об этом уровне организации материи, они носили характер натурфилософии, т.е. наблюдаемые природные явления объяснялись на основе умозрительных философских принципов, при отсутствии методов экспериментального исследования. Самый большой вклад в исследование макромира сделали представители классического естествознания. Начало формирования научных взглядов на природу относится к XVI веку, когда Г. Галилей, обосновал гелиоцентрическую систему Н. Коперника, открыл закон инерции, разработал методику нового описания мира – научно-теоретического (выделение некоторых физических и геометрических характеристик исследуемых объектов). Таким образом, он заложил основы механистической картины мира. Ньютон, опираясь на труды Галилея, разработал теорию механики, описывающую одинаковыми закономерностями и движение небесных тел и земных объектов. В рамках механистической картины мира сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц – корпускул или атомов. Абсолютно прочных неделимых обладающих массой. Время рассматривалось как величина независящая от пространства и материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики.

К корпускулярной модели были сведены все процессы во вселенной, в том числе и  распространение света. Ньютон считал, что святящиеся тела испускают мельчайшие частицы, движущиеся в соответствии с законами механики. Но наряду с корпускулярной теорией света в это же время начинает распространиться и волновая концепция автором, которой был Х. Гюйгенс. Волновая теория устанавливала аналогию между распространением свет и распространение волн в различных средах (в воде в воздухе). Средой распространения свет считался в то время эфир. Главным аргументом в пользу своей концепции Гюйгенс считал тот факт, что два луча света проходят сквозь друг друга, не рассеиваясь. Некоторые противоречия волновой концепции света были устранены опытами Гримальди, луч света способен, как и любая волна, огибать препятствия, если обычно этого не заметно, то это потому что у света очень маленькая длинна волны, но если рассмотреть границу очень резкой тени при некотором увеличении, можно увидеть слабые участки освещенности в форме перемежающихся светлых и темных участков и ореолов. Это явление получило название дифракции. Подтверждением волновой концепции является так же интерференция (световые волны находящиеся в противофазе как бы гасят друг друга). В области электромагнитных явленией корпускулярная модель так же оказалась несостоятельной. Эксперименты М. Фарадея и теоретические работы Дж. Максвелла показали неадекватность механистической модели и в области электромагнитных явлений. М. Фарадей ввел понятие силовых линий, как направление действия электрических сил в магнитном поле. Дж. Максвелл создал уравнения, описывающие выводы М. Фарадея о магнетизме и электричестве. Благодаря этому силовое поле, первоначально являвшееся вспомогательным понятием, обрело собственную физическую реальность. Обобщив установленные ранее экспериментальным путем законы электромагнитных явлений и открытое М. Фарадеем явление магнитной индукции, Дж. Максвелл математическим путем нашел систему дифференциальных уравнений, описывающих электромагнитное поле. Из уравнений Максвелла следовала возможность самостоятельного существования поля, которое, не будучи привязанным к заряду, распространяется в пространстве. Вычисленная им скорость распространения электромагнитного поля оказалась равна скорости света. Исходя из этого, Максвелл сделал вывод, что световые волны представляют собой электромагнитные волны. Это положение было экспериментально подтверждено немецким физиком Г. Герцем в 1888 г.

После экспериментов Герца в физике утвердилось понятие поля как объективно существующей физической реальности. Таким образом, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля. Вещество и поле различаются по физическим характеристикам: частицы вещества обладают массой покоя, а частицы поля – нет. Вещество и поле различаются по степени проницаемости: вещество малопроницаемо, а поле проницаемо полностью. Скорость распространения поля равна скорости света, а скорость движения частиц на несколько порядков меньше.  

Позднее в ходе исследования микромира положение  о веществе и поле как самостоятельных  независимых друг от друга видах  материи было поставлено под сомнение.

Микромир

Изучая  микрочастицы, ученые столкнулись с тем, что одни и те же объекты обнаруживали как волновые, так и корпускулярные свойства. Первые исследования в этой области были проведены немецким физиком М. Планком. В процессе исследования теплового излучения он пришел к выводу, что энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в определенных неделимых порциях – квантах. Сумма энергий этих порций определяется через число колебаний и универсальную естественную постоянную. Понятие элементарного кванта в дальнейшем послужило основой для понимания всех свойств атомной оболочки и атомного ядра. А. Эйнштейн перенес идею квантованного поглощения и отдачи энергии на излучение вообще и, таким образом, обосновал новое учение о свете.

Квантовая теория света или фотонная теория Эйнштейна утверждала, что свет есть постоянно распространяющееся в мировом пространстве волновое явление. Вместе с тем световая энергия концентрируется в определенных точках, и свет поэтому имеет прерывистую структуру. Свет можно рассматривать как поток энергетических квантов или фотонов. Таким образом, ранее считавшаяся опровергнутой корпускулярная теория света оказалась тоже отчасти верной.

Представления Эйнштейна о квантах света  послужили отправным пунктом  для теории Нильса Бора и привели  к возникновению идеи о «волнах материи». В 1924 г. французских физик Луи де Бройль выдвинул идею о необходимости использовать волновые и корпускулярные представления для описания свойств материи. В 1926 г. австрийский физик Э. Шредингер нашел математическое уравнение, определяющее поведение волн материи. Английский физик Поль Дирак обобщил его. Таким образом, была выдвинута идея о возможности создания единой математической модели материи и энергии. Экспериментальные данные подтвердили существование явлений дифракции атомов, нейтронов, электронов и даже молекул. Признание корпускулярно-волнового дуализма в современной физике стало всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств. Квантово-механическое описание микромира основывается на соотношении неопределенности, установленном немецким физиком В. Гейзенбергом. Принцип соотношения неопределенности утверждает, что для элементарных частиц никогда нельзя установить одновременно оба важнейших параметра классической механики – координату и скорость. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то при этом нарушается ее движение, и наоборот, при точном измерении скорости нельзя определить место расположения частицы. Это связано с тем, что, пользуясь законами макромира, невозможно построить модель явлений микромира. Любая попытка дать четкую картину микрофизических процессов опирается либо на волновое, либо на корпускулярное представление и не дает возможности описать квант, являющийся и частицей, и волной одновременно. Нильс Бор сформулировал это как принцип дополнительности: «Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего». В процессе исследования мы наблюдаем не реальность как таковую, а результат взаимодействия микрообъекта с приборами, одни из которых способны фиксировать волновую, другие – корпускулярную природу элементарных частиц. Обе картины законны, и противоречие между ними снять нельзя. Поэтому корпускулярная и волновая картины должны дополнять одна другую.

Информация о работе Структурные уровни организации материи