Возникновение земли. Возникновение жизни на Земле

Автор: Пользователь скрыл имя, 16 Декабря 2010 в 23:30, реферат

Описание работы

На протяжении многих веков вопрос о происхождении Земли оставался монополией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и солнечной системы, основанные на астрономических наблюдениях, были выдвинуты только лишь в xviii веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений.

Первой в этом ряду была знаменитая теория, сформулированная в 1755 году немецким философом Иммануилом Кантом. Кант считал, что солнечная система возникла из некой первичной материи, до того свободно рассеянной в космосе.

Содержание

1.Теория Канта.
2. Небулярная теория Лапласа.

3. Осадочные породы.

4. Происхождение жизни.

5. Палеозойская эра.

6. Животный мир палеозоя.

7. Моллюски.

8. Беспозвоночные в конце палеозоя.

9. Расцвет позвоночных. Рыбы.

10. Третичный период

11. Беспозвоночные.

12. Золотой век млекопитающих.

13. Четвертичный период.

14. Позвоночные Млекопитающие (исключая приматов).

15. Приматы.

16. Список литературы.

Работа содержит 1 файл

биологияВозникновение земли. Возникновение жизни на земле..rtf

— 1.43 Мб (Скачать)

    Жизнь могла появиться только тогда, когда в архее сложились для этого благоприятные условия и, в первую очередь, благоприятная температура. Живая материя, помимо других веществ, построена из белков. Поэтому к моменту происхождения жизни температура на земной поверхности должна была упасть настолько, чтобы белки не разрушались. Известно, что ныне температурная граница существования живой материи лежит у 90 С, в горячих источниках при этой температуре живут некоторые бактерии. При этой высокой температуре уже могут образовываться определенные органические соединения, необходимые для образования живой материи, и прежде всего белки. Трудно сказать, сколько времени понадобилось для того, чтобы земная поверхность остыла для соответствующей температуры.

    Многие исследователи, изучающие проблему происхождения жизни на Земле, полагают, что жизнь зародилась на морском мелководье в результате обычных физико-химических процессов, присущих неорганической материи. Определенные химические соединения образуются в определенных условиях и химические элементы соединяются друг с другом в определенных весовых соотношениях. Вероятность возникновения сложных органических соединений особенно высока для атомов углерода вследствие их специфических особенностей. Именно поэтому углерод стал тем строительным материалом, из которого по законам физики и химии относительно легко и быстро возникли самые сложные органические соединения.

    Молекулы отнюдь не сразу достигли той степени сложности, которая необходима для построения “живой материи. Мы можем говорить о химической эволюции, предшествовавшей биологической и завершившейся появлением живых существ. Процесс химической эволюции был довольно медленным. Начало этого процесса удалено от современности на 4,5 млрд. лет и практически совпадает со временем формирования самой Земли. Первым этапом на этом пути было возникновение элементов, которые стали вступать в различные комбинации, образуя химические соединения. И вскоре после этого на поверхности Земли появились органические соединения и их полимеры, оказавшиеся предшественниками первичных живых систем - эобионтов. Последние появились на менее 3,5 млрд. лет назад.

    Первые живые организмы отличались, естественно, предельной простотой строения. Однако естественный отбор, в ходе которого выживали мутанты, лучше приспособленные к условиям среды, я вымирали их менее адаптированные конкуренты, вел к неуклонному усложнению форм жизни. Первичные организмы, появившиеся, по нашим представлениям, где-то в раннем архее, еще не подразделялись на животных и растения. Обособление этих двух систематических групп было закончено только в конце раннего архея. Древнейшие организмы жили и умирали в первичном океане, и скопления их мертвых тел уже могли оставить в породах отчетливые отпечатки.

    Первые живые организмы могли питаться исключительно органическими веществами, т. е., они были гетеротрофными. Но исчерпав запасы органического вещества в своем ближайшем окружении, они оказались поставленными перед выбором: погибнуть или выработать способность синтезировать органические вещества из материалов неживой природы, и прежде всего из углекислого газа и воды. И действительно, в ходе эволюции некоторые организмы (растения) приобрели способность поглощать энергию солнечных лучей и с ее помощью расщеплять воду на составляющие элементы. Используя водород для восстановительной реакции, они смогли перерабатывать углекислый газ в углеводы и строить из него другие органические вещества в своем теле. Эти процессы известны под названием фотосинтеза. Организмы, способные превращать неорганические вещества в органические путем внутренних химических процессов, называются автотрофными. Появление фотосинтезирующих автотрофных организмов явилось переломным моментом в истории жизни на Земле. С этого времени началось накопление свободного кислорода в атмосфере и стало резко увеличиваться общее количество существующего на Земле органического вещества. Без фотосинтеза дальнейший прогресс в истории жизни на Земле был невозможен. Следы фотосинтезирующих организмов мы находим в самых древних слоях земной коры.

    Первые животные и растения были микроскопическими одноклеточными существами. Определенным шагом вперед было объединение однородных клеток в колонии; однако по-настоящему серьезный прогресс стал возможен только после появления многоклеточных организмов. Их тела состояли из отдельных клеток или групп клеток различной формы и назначения. Это дало толчок бурному развитию жизни, организмы становились все более сложными и разнообразными. В начале протерозойского периода быстро прогрессировала флора и фауна планеты. В морях процветали уже несколько более прогрессивные формы водорослей, появились первые многоклеточные организмы: губки, кишечнополостные, моллюски и черви. Последующие этапы биологического развития сравнительно легко прослеживаются по окаменелым остаткам скелетов, встречающимся в различных слоях земной коры. Эти остатки, которые благодаря случаю и благоприятной среде сохранились в отложениях вплоть до наших дней, мы называем окаменелостями, или ископаемыми. Древнейшие окаменелости

    Древнейшие остатки организмов на Земле обнаружены в докембрийских отложениях Южной Африки. Это бактериеподобные организмы, возраст которых оценивается учеными в 3,5 млрд. лет. Они столь малы (0,25 Х 0,60 мм), что разглядеть их можно только с помощью электронного микроскопа. Органические части этих микроорганизмов хорошо сохранились и позволяют сделать заключение о сходстве с современными бактериями. Химический анализ выявил их биологический характер. Другие доказательства докембрийской жизни были найдены в древних образованиях Миннесоты (27 млрд. лет), Родезии (2,7 млрд. лет), вдоль границы Канады и США (2 млрд. лет), на севере штата Мичиган (1 млрд. лет) и в других местах.

    Остатки животных со скелетными частями обнаружены в докембрийских отложениях лишь в последние годы. Однако уже давно в докембрийских отложениях находили остатки различных “бесскелетных” животных. Эти примитивные существа еще не имели ни известкового скелета, ни твердых опорных структур, однако изредка находились отпечатки тел многоклеточных организмов, а как исключение и их окаменевшие остатки. В качестве примера можно привести открытие в канадских известняках любопытных шишковидных образований Atikokania, - которых многие ученые считают родителями морских губок. На жизнедеятельность более крупных живых существ, по всей вероятности червей, показывают четкие зигзагообразные отпечатки, - следы ползания, а также остатки “норок”, обнаруженные в тонкослоистых осадках морского дна. Мягкие тела животных разложились в незапамятные времена, но палеонтологи смогли по следам определить образ жизни животных и установить существование различных их родов, напр., Planolithes, Russophycus и др. Чрезвычайно интересная фауна была открыта в 1947 г. австралийским ученым Р.К. Сприггсом в холмах Эдиакары, приблизительно в 450 км к северу от Аделаиды (Южная Австралия). Эта фауна была изучена профессором Аделаидского университета, австрийцем по происхождению, Н. Ф. Глесснером, который констатировал, что большинство видов животных из Эдиакары относится к неизвестным ранее группам бесскелетных организмов. Одни из них принадлежат к древним медузам, другие напоминают сегментированных червей - аннелид. В Эдиакаре и близких по возрасту местонахождениях Южной Африки и других регионов обнаружены также остатки организмов, принадлежащих к совершенно неизвестным науке группам. Так, профессор X. Д. Пфлуг установил на основе некоторых остатков новый тип примитивных многоклеточных животных Petalonamae. Эти организмы обладают листовидным телом и происходят, по-видимому, от примитивнейших колониальных организмов. Родственные связи петалонамий с другими типами животных не вполне ясны. С эволюционной точки зрения, однако, очень важно что в эдиакарское время сходная по составу фауна населяла моря различных регионов Земли.

    Еще совсем недавно многие высказывали сомнение в том, что эдиакарские находки действительно имеют протерозойское происхождение. Новые радиометрические методы показали, что слои с эдиакарской фауной насчитывают возраст около 700 млн. лет. Иными словами, они принадлежат позднему протерозою.

    Еще более широкое распространение имели в протерозое микроскопические одноклеточные растения. Следы жизнедеятельности синезеленых водорослей так называемые строматолиты, построенные из концентрических слоев извести, известны в отложениях, возраст которых насчитывает до 3 млрд. лет. Синезеленые водоросли не обладали скелетом и строматолиты образованы материалом, выпавшим в осадок в результате биохимических процессов жизнедеятельности этих водорослей. Синезеленые водоросли, наряду с бактериями, принадлежат к наиболее примитивным организмам - прокариотам, в клетках которых еще отсутствовало оформленное ядро.

    Итак, в докембрийских морях появилась жизнь, а появившись, разделилась на две главные формы: на животных и растения. Первые простейшие организмы развились в многоклеточные организмы, относительно сложные живые системы, ставшие родоначальниками растений и животных, которые в последующие геологические эпохи расселились по всей планете. Жизнь множила свои проявления на морском мелководье, проникая и в пресноводные бассейны; многие формы уже готовились к новому революционному этапу эволюции - к выходу на сушу.

Палеозойская эра

    Вряд ли можно мысленно охватить отрезок времени длиной в 370 млн. лет. Именно столько продолжался следующий этап истории Земли -- палеозойская эра. Геологи подразделяют ее на шесть периодов: кембрийский -- самый древний из них, -- ордовикский, силурийский, девонский, карбоновый и пермский. Палеозой начался колоссальным разливом морей, последовавшим за появлением обширных кусков суши в конце протерозоя. Многие геологи полагают, что в те времена существовал единый огромный континентальный блок, называемый Пангея (в переводе с греческого -- “вся земля”), который был со всех сторон окружен мировым океаном. Со временем этот единый континент распался на части, ставшие ядрами современных континентов. В ходе дальнейшей истории Земли эти ядра могли увеличиваться за счет процессов горообразования или же вновь распадаться на части, которые продолжали удаляться друг от друга, пока не заняли положение современных континентов.

    Впервые гипотезу о разрыве и взаимном расхождении континентов (“континентальный дрейф”) высказал в 1912 г. немецкий геолог Альфред Вегенер. По его представлениям Пангея первоначально разделилась на два сверхконтинента: Лауразию в северном полушарии и Гондвану на юге. Впадина между ними была затоплена морем, носящим название Тетис. Позднее, в силурийском периоде вследствие каледонского и герцинского горообразовательных процессов на севере поднялся обширный континент. Его сильно пересеченный рельеф в ходе девонского периода был занесен продуктами выветривания мощных горных массивов; в .сухом и горячем климате их частицы обволакивались окисью железа, что придавало им красноватую окраску. Подобное явление можно наблюдать и в некоторых современных пустынях. Вот почему этот девонский континент часто называется Древним красным континентом. На нем в девоне пышно развивались многочисленные новые группы наземных растений, а в некоторых его частях были обнаружены остатки первых наземных позвоночных -- рыбообразных амфибий.

    В это время Гондвана, включавшая в себя всю современную Южную Америку, почти всю Африку, Мадагаскар, Индию и Антарктиду, оставалась еще единым сверхконтинентом.

    К концу палеозоя море отступило, и герцинское горообразование стало понемногу слабеть, сменившись варисцийской складчатостью Центральной Европы. В конце палеозоя вымирают многие наиболее примитивные растения и животные. Растения завоевывают сушу

    В течение палеозоя одни группы растений постепенно сменялись другими. В начале эры, от кембрия до силура, доминировали морские водоросли, но уже в силуре появляются высшие сосудистые растения, произрастающие на суше. До конца каменноугольного периода преобладали споровые растения, но в пермском периоде, особенно, в его второй половине, значительную часть наземной растительности составляют семянные растения из группы голосеменных (Gymnospermae). До начала палеозоя, за исключением нескольких сомнительных находок спор, признаков развития наземных растений нет. Однако, вполне вероятно, что некоторые растения (лишайники, грибы) начали проникать во внутренние районы суши еще в протерозое, так как нередко отложения этого времени содержат значительные количества необходимых растениям питательных веществ.

    Для того, чтобы приспособиться к новым условиям жизни на суше, многим растениям пришлось коренным образом изменить свое анатомическое строение. Так, например, растениям нужно было приобрести наружный эпидермальный покров для защиты от быстрой потери влаги и высыхания; их нижние части должны были одеревянеть и превратиться в подобие опорного каркаса, чтобы противостоять силе тяжести, столь чувствительной после выхода из воды. Корня ми они уходили в почву, откуда черпали воду и питательные вещества. Поэтому растениям нужно было выработать сеть каналов для доставки этих веществ к верхним частям своего тела. Кроме того, они нуждались в плодородной почве, а условием этого была жизнедеятельность множества почвенных микроорганизмов, бактерий, синезеленых водорослей, грибов, лишайников и почвенных животных. Продукты жизнедеятельности и мертвые тела этих организмов постепенно превращали кристаллические горные породы в плодородную почву, способную прокормить прогрессирующие растения. Попытки освоения суши становились все более удачными. Уже в отложениях силурийских морей Центральной Чехии встречаются хорошо сохранившиеся остатки древнейших сосудистых растений -- псилофитов (в переводе с греческого -- “лишенных листьев”). Эти первичные высшие растения, стебель которых нес пучок сосудов, проводящих жидкости, имели наиболее сложную и комплексную организацию из всех автотрофныхрастенийтоговремени,исключая,возможно,существовавшие уже в то время мхи, наличие которых в силуре, однако, еще не доказано. Псилофитовые флоры, появившиеся к концу силурийского периода, процветали вплоть до конца девона. Таким образом, силурийский период положил конец многовековому господству водорослей в растительном мире планеты. Хвощи, плауны и папоротники

Информация о работе Возникновение земли. Возникновение жизни на Земле