Ядерная физика, катализ и энергетика будущего. Химия экстремальных состояний

Автор: Пользователь скрыл имя, 15 Февраля 2012 в 10:21, реферат

Описание работы

Первое явление из области ядерной физики было открыто в 1896 г. Анри Беккерелем. Это естественная радиоактивность солей урана, проявляющаяся в самопроизвольном испускании невидимых лучей, способных вызывать ионизацию воздуха и почернение фотоэмульсий. Через два года Пьер Кюри и Мария Склодовская-Кюри открыли радиоактивность тория и выделили из солей урана полоний и радий, радиоактивность которых оказалась в миллионы раз сильнее радиоактивности урана и тория.

Содержание

Ядерная физика 3-11
1.1 История 3
1.2 Общие сведения 4-5
1.3 Атомное ядро 5-6
1.4 Радиоактивный распад 7-9
1.5 Ядерная реакция 9-11
1.6 Разделы 11
Катализ 12-14
2.1 Общие сведения 12
2.2 Типы катализа 12-13
2.3 Носитель катализатора 14
2.4 Химия катализа 14
Энергетика будущего 15-16
Химия экстремальных состояний 17-20
Список используемой литературы 21

Работа содержит 1 файл

Реферат по КСЕ Ядерная физика.docx

— 52.31 Кб (Скачать)

Если после  столкновения сохраняются исходные ядра и частицы и не рождаются  новые, то реакция является упругим  рассеянием в поле ядерных сил, сопровождается только перераспределением кинетической энергии и импульса частицы и ядра-мишени и называется потенциальным рассеяние.

Сечение ядерной реакции

Вероятность реакции  определяется так называемым ядерным  сечением реакции. В лабораторной системе  отсчёта (где ядро-мишень покоится) вероятность взаимодействия в единицу  времени равна произведению сечения (выраженного в единицах площади) на поток падающих частиц (выраженный в количестве частиц, пересекающих за единицу времени единичную  площадку). Если для одного входного канала могут осуществляться несколько  выходных каналов, то отношения вероятностей выходных каналов реакции равно  отношению их сечений. В ядерной  физике сечения реакций обычно выражаются в специальных единицах — барнах, равных 10−24 см².

Выход реакции

Число случаев  реакции, отнесённое к числу бомбардировавших мишень частиц называется выходом ядерной реакции. Эта величина определяется на опыте при количественных измерениях. Поскольку выход непосредственно связан с сечением реакции, измерение выхода по сути является измерением сечения реакции.

Виды ядерных реакций

  • Деление ядра

Деление ядра — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.

Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

  • Термоядерный  синтез

Термоядерная  реакция — это экзоэнергетическая реакция слияния легких ядер при очень высокой температуре (107 К).

  • Фотоядерная реакция

При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром. Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном нейтронов. Такой распад ведёт к ядерным реакциям и , которые и называются фотоядерными, а явление испускания нуклонов в этих реакциях — ядерным фотоэффектом.

Разделы ядерной физики

  • Нейтронная физика, совокупность исследований строения вещества с помощью нейтронов, а также исследования свойств и структуры самих нейтронов.
  • Физика, в котором предметом исследования выступают ядроподобные системы, содержащие кроме протонов и нейтронов другие элементарные частицы — гипероны.

 

Катализ

Катализ— избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий. Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом.

Явление катализа распространено в природе (большинство  процессов, происходящих в живых  организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.). Большая часть всех промышленных реакций — это каталитические.

Основные принципы катализа

Катализатор изменяет механизм реакции на энергетически  более выгодный, то есть снижает энергию активации. Катализатор образует с молекулой одного из реагентов промежуточное соединение, в котором ослаблены химические связи. Это облегчает его реакцию со вторым реагентом. Важно отметить, что катализаторы ускоряют обратимые реакции, как в прямом, так и в обратном направлениях.

Типы катализа

Катализ может  быть положительным (когда скорость реакции увеличивается) и отрицательным (когда скорость реакции уменьшается). Для обозначения отрицательного катализа часто используют термин ингибирование.

Катализ бывает гомогенным и гетерогенным. В гомогенном катализе катализатор состоит в той же фазе, что и реактивы реакции, в то время, как гетерогенные катализаторы отличаются фазой.

  • Гомогенный  катализ

Примером гомогенного  катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:

H2О2 + I → H2О + IO

H2О2 + IO → H2О + О2 + I

При гомогенном катализе действие катализатора связано  с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.

  • Гетерогенный  катализ

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного  катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

  1. Диффузия реагирующих веществ к поверхности твердого вещества
  2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их
  3. Химическая реакция между реагирующими молекулами
  4. Десорбция продуктов с поверхности катализатора
  5. Диффузия продукта с поверхности катализатора в общий поток

Носитель катализатора

Носитель катализатора, иначе подложка (катализатора)— инертный или малоактивный материал, служащий для стабилизации на его поверхности частиц активной каталитической фазы.

Роль носителя в гетерогенном катализе состоит  в предотвращении агломерации или спекания активного компонента, что позволяет поддерживать высокую площадь контакта активного вещества  и реагентов. Количество носителя, как правило, гораздо больше количества нанесенного на него активного компонента. Основными требованиями к носителям являются большая площадь поверхности и пористость, термическая стабильность, химическая инертность, высокая механическая прочность.

Химия катализа

Химия катализа изучает вещества, изменяющие скорость химических реакций. Вещества, замедляющие реакции, называются ингибиторами. Ферменты — это биологические катализаторы. Катализатор не находится в стехиометрических отношениях с продуктами и регенерируется после каждого цикла превращения реагентов в продукты. Несмотря на появление новых способов активации молекул (плазмохимия, радиационное и лазерное воздействия и другие), катализ − основа химических производств (относительная доля каталитических процессов составляет 80-90 %).

Различают катализы: ''Гомогенный, гетерогенный, межфазный, мицеллярный, ферментативный."

 

Энергетика  будущего

Микроэнергетики - раздела энергетики, связанной с производством энергии при помощи компактных маломощных источников различной природы. К этой категории относят солнечные батареи, ветрогенераторы, водородные элементы и газовые микротурбины, т.е. маломощные генераторы электричества. По сравнению с традиционными технологиями, микроэнергетика более эффективна и надежна.

микроэнергетика стремительно развивается и особенно та ее часть, которая связана с альтернативной энергетикой. Согласно прогнозам Мирового Энергетического Конгресса к 2020 году в США, Германии, Японии, Великобритании и других развитых западных странах доля альтернативных экологически чистых источников энергии составит более 20% всей производимой энергии (20% потребления энергии в США -- это все энергоснабжение России). К 2020 году Европа планирует осуществлять теплоснабжение 70%(!) своего жилого фонда за счет экологически чистой энергии, в частности, солнечной. Среди альтернативных источников энергии особенно активно развивается ветроэнергетика -- 24% в год. Сейчас это наиболее быстро растущий сектор энергетической промышленности в мире. Следующее перспективное направление микроэнергетики - солнечная энергетика. Проблема утилизации экологически чистой и притом "дармовой" солнечной энергии волнует человечество с незапамятных времен, но только недавно успехи в этом направлении позволили начать формировать реальный, экспоненциально развивающийся рынок солнечной энергетики. К настоящему времени основными способами прямой утилизации солнечной энергии являются преобразование ее в электрическую и тепловую. Устройства, преобразующие солнечную энергию в электрическую, называются фотоэлектрическими или фотовольтаическими (PV-системы), а приборы, преобразующие солнечную энергию в тепловую, -- термическими (Т-системы). В последнее время все большее распространение получают так называемые гибридные или как их еще называют комбинированные системы (Н-системы), сочетающие в себе функции фотовольтаических и термических устройств. Следующая перспективная технология - водородные топливные элементы. Суть ее в том, что на специальных мембранах электрон отделяется от ядра атома водорода, в результате чего получается электрический ток, а в отходах - вода и тепло.

Лучевая энергетика  новая специальность, возникшая на основе симбиоза современной физики полупроводников квантовой микро- и оптоэлектроники последних достижений в области создания сверхчистых оптических материалов и достижений в области создания уникальных систем типа фазированных решеток полупроводниковых лазеров, солнечных элементов и оптико-волоконных систем.

Считается, что  существенный вклад в решение  энергетических и  экологических проблем могут внести, заметно снизив тепловую нагрузку на Землю, космические электростанции. Япония планирует к 2040 г. построить в космосе свою первую внеземную электростанцию. США намерены еще раньше создать группировку спутников, которые будут собирать солнечную энергию, преобразовывать ее в электрическую и передавать на Землю.  Концепция энергоснабжения из космоса разработана российским Исследовательским центром им. М.В. Келдыша. На Земле оно будет приниматься специальным устройством  -  ректенной (от английского rectifying antenna  - выпрямляющая антенна), представляющей собой антенную решетку,  в которой микроволновое излучение (СВЧ-излучение) преобразуется в энергию постоянного тока. 

 

Химия экстремальных состояний

При взаимодействии реагентов с катализатором происходит ослабление исходных химических связей. Оно возможно при энергетической активизации реагента, которая достигается  при тепловом либо радиоактивном  воздействии, характеризующемся большой  величиной энергии. Вопросами энергетической активизации реагента занимается химия  экстремальных состояний, которая  включает плазмохимию, радиационную химию, химию высоких энергий, высоких  давлений и температур.

Плазмохимия изучает процессы в низкотемпературной плазме. Плазма — это ионизированный газ. В плазмохимии рассматриваются процессы при температурах от 1000 до 10000°С. Такие процессы характеризуются возбужденным состоянием частиц, столкновениями молекул с заряженными частицами и, что особенно важно, очень высокими скоростями реакций.

В плазмохимических процессах скорость перераспределения  химических связей очень высока.

Метановый плазмотрон с производительностью 75 т ацетилена  в сутки имеет сравнительно крохотные  размеры: длину 65 см и диаметр 15 см. Такой  плазмотрон заменяет целый огромный завод. При температуре 3000-3500°С за одну десятитысячную долю секунды 80% метана превращается в ацетилен. Степень  использования энергии достигает 90-95%.

Информация о работе Ядерная физика, катализ и энергетика будущего. Химия экстремальных состояний