Закон всемирного тяготения

Автор: Пользователь скрыл имя, 23 Декабря 2011 в 10:52, реферат

Описание работы

Подобно тому как Луна движется вокруг Земли, Земля в свою очередь обращается вокруг Солнца. Вокруг Солнца обращаются Меркурий, Венера, Марс, Юпитер и другие планеты Солнечной системы. Ньютон доказал, что движение планет вокруг Солнца происходит под действием силы притяжения, направленной к Солнцу и убывающей обратно пропорционально квадрату расстояния от него. Земля притягивает Луну, а Солнце - Землю, Солнце притягивает Юпитер, а Юпитер - свои спутники и т. д. Отсюда Ньютон сделал вывод, что все тела во Вселенной взаимно притягивают друг друга.
Силу взаимного притяжения, действующую между Солнцем, планетами, кометами, звездами и другими телами во Вселенной, Ньютон назвал силой всемирного тяготения.
Сила всемирного тяготения, действующая на Луну со стороны Земли, пропорциональна массе Луны. Очевидно, что сила всемирного тяготения, действующая со стороны Луны на Землю, пропорциональна массе Земли. Эти силы по третьему закону Ньютона равны между собой. Следовательно, сила всемирного тяготения, действующая между Луной и Землей, пропорциональна массе Земли и массе Луны, т. е. пропорциональна произведению их масс.

Содержание

Введение 3
1. Масса инертная и гравитационная. Принцип эквивалентности 5
2. Движения планет и законы Кеплера 8
3. Закон всемирного тяготения. 11
4. Гравитационное поле Земли 22
Заключение 25
Список литературы 27

Работа содержит 1 файл

КСЕ Закон всемирного тяготения.doc

— 246.50 Кб (Скачать)

      Титульный лист 
 

      Содержание 

      Введение

      Подобно тому как Луна движется вокруг Земли, Земля в свою очередь обращается вокруг Солнца. Вокруг Солнца обращаются Меркурий, Венера, Марс, Юпитер и другие планеты Солнечной системы. Ньютон доказал, что движение планет вокруг Солнца происходит под действием силы притяжения, направленной к Солнцу и убывающей обратно пропорционально квадрату расстояния от него. Земля притягивает Луну, а Солнце - Землю, Солнце притягивает Юпитер, а Юпитер - свои спутники и т. д. Отсюда Ньютон сделал вывод, что все тела во Вселенной взаимно притягивают друг друга.

      Силу взаимного притяжения, действующую между Солнцем, планетами, кометами, звездами и другими телами во Вселенной, Ньютон назвал силой всемирного тяготения.

      Сила  всемирного тяготения, действующая  на Луну со стороны Земли, пропорциональна массе Луны. Очевидно, что сила всемирного тяготения, действующая со стороны Луны на Землю, пропорциональна массе Земли. Эти силы по третьему закону Ньютона равны между собой. Следовательно, сила всемирного тяготения, действующая между Луной и Землей, пропорциональна массе Земли и массе Луны, т. е. пропорциональна произведению их масс.

      Распространив установленные закономерности - зависимость силы тяжести от расстояния и от масс взаимодействующих тел - на взаимодействие всех тел во Вселенной, Ньютон открыл в 1682 г. закон всемирного тяготения: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

      Векторы сил всемирного тяготения направлены вдоль прямой, соединяющей тела.

      Закон всемирного тяготения в такой  форме может быть использован  для вычисления сил взаимодействия между телами любой формы, если размеры  тел значительно меньше расстояния между ними. Ньютон доказал, что для  однородных шарообразных тел закон  всемирного тяготения в данной форме применим при любых расстояниях между телами. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

      Силы  всемирного тяготения называют гравитационными силами, а коэффициент пропорциональности G в законе всемирного тяготения называют гравитационной постоянной.

      Цель данной работы является рассмотреть астрономическую вселенную и закон всемирного тяготения.

      Исходя  из цели, поставлены следующие задачи:

      - рассмотреть понятия масса инертная и гравитационная, принцип эквивалентности;

      - рассмотреть движение планет и законы Кеплера;

      - рассмотреть закон всемирного  тяготения;

      - рассмотреть гравитационное поле Земли.

      Работа  состоит из введения, четырех параграфов, заключения, списка литературы.

      В работе были использованы учебные издания, пособия и другие источники.

      1. Масса инертная и гравитационная. Принцип эквивалентности

     Галилей в опытах с использованием наклонной  плоскости открыл явление падения  всех тел на Земле с одинаковым ускорением. Масса т связана с весом тела, но вес зависит от массы того тела, к которому притягивается масса т. Вес не может служить коэффициентом пропорциональности между силой и ускорением, поэтому ввели понятие инертной массы М, характеризующей «нежелание» тела сдвинуться с места. Масса не зависит от направления движения (это многократно проверялось экспериментально) и с погрешностью до 10-9 является скалярной величиной. (В отличие от векторной, каждое значение скалярной величины можно выразить одним, действительным, числом, а совокупность значений изобразить на линейной шкале — таковы длина, площадь, время и т.д.)

     Ньютон  связал понятия массы и веса тела. Он предположил, что Луна падает на Землю так же, как камень или  яблоко, но с ускорением во столько  раз меньшим, во сколько квадрат  земного радиуса меньше квадрата расстояния между центрами Земли и Луны. Гипотеза зависимости притяжения между точечными массами от квадрата расстояний возникла из геометрической аналогии. Поскольку Луна находится на расстоянии r от Земли в 60 земных радиусов R, а период ее обращения Т = 27,3 сут = 2,36 • 106 с, Ньютон оценил отношение ускорений Луны Wc и камня g как 1/3600. Так как g = 9,8 м/с2, центростремительное ускорение Луны

     

     т.е. g примерно в 602 раз больше ускорения Луны. Итак, сила тяготения, действующая со стороны Земли на яблоко или камень, находящийся на орбите Луны, уменьшится в 3600 раз, что и соответствует отношению квадратов расстояний. Значит, сила тяготения между двумя телами должна убывать обратно пропорционально квадрату расстояния между ними. В расчетах принято, что небесные тела взаимодействуют так, как будто вся их масса сосредоточена в центре масс. Доказать это строго Ньютон сумел лишь через 20 лет с помощью созданного им интегрального исчисления.

     Ньютон  записал уравнение движения под  действием силы тяжести и проверил решение в виде эллиптичных траекторий для большого класса начальных условий и не очень больших скоростей. Так он подтвердил предложенную Р. Гуком гипотезу обратно пропорциональной зависимости силы тяготения от квадрата расстояний. На камень внутри Земли внешние слои не действуют или поле внутри однородной сферы равно нулю, поэтому однородный шар (или шаровой слой) притягивает точки внешней области так же, как если бы вся его масса была сосредоточена в центре шара. Если же интересоваться силой, которая действует внутри Земли или другого тела с распределенной массой, то зависимость от расстояния будет иной.

     Ньютон  провел серию опытов с маятниками разной массы для повторения опытов X. Рена и Э. Мариотта по удару и убедился, что свинцовый и деревянный шары падают с одинаковыми ускорениями. Земля одинаково действует на оба шара. Но если действие измерять не ускорением, а силой, удерживающей шары в равновесии на весах, то ее влияние на свинцовый шар будет больше, чем на деревянный. Такое влияние Земли на каждое тело можно выражать тяжестью, измеренной на весах, путем сравнения с тяжестью тела, принятой за единицу. И он ввел понятие силы F = MW как меры действия одного тела на другое, отождествляя вес с силой действия, оказываемого на него Землей. Далее Ньютон указал, что, если бы вокруг Земли вращалось несколько лун, то все они двигались бы под действием аналогичной силы и их движение определялось бы законами Кеплера. Затем Ньютон перешел к изучению других планет и планетных систем (это определение он ввел после открытия спутников у Юпитера и Сатурна), считая, что силы тяготения должны иметь одну природу и у поверхности Земли, и в космосе. Признание материального единства мира - результат коперниканской революции. Если нет различия между земным и небесным и законы едины для всей Вселенной, то их можно изучать и на Земле. Квадрат расстояния в знаменателе отражает евклидову метрику пространства. То есть в трехмерном пространстве поверхность сферы пропорциональна квадрату радиуса.

     По  Копернику, пространство однородно и изотропно, в нем нет выделенных направлений и точек. В пространстве - евклидова геометрия, и физическим действием обладают только те точки, в которых сосредоточена материя. Поэтому на Земле тела падают в направлении не геометрического центра мира (у него - это центр Солнца), а материального центра Земли. Это утверждение справедливо и для других небесных тел - в этом коперниканский принцип универсальной гравитации как функции массы тел.

     Инертная  масса определена динамически: прикладывается известная сила, измеряется ускорение и из формулы F = MW выводится масса М. В законе тяготения гравитационную массу определяют статически: измеряют силу взаимодействия между двумя телами, расположенными на определенном расстоянии. У Ньютона масса — единственная причина гравитационного взаимодействия. Галилей пришел к выводу о пропорциональности гравитационной т и инертной М масс, будто бы сбрасывая тела с высоты.

     Ньютон  не объяснил причину этой пропорциональности; она следует из опытов Галилея: все  тела на Земле падают с одинаковым ускорением. Тот факт, что никогда не было обнаружено различия инертной и гравитационной масс, наводит на мысль, что тяготение может быть эквивалентно ускорению. Эйнштейн истолковал этот эффект как истинную природу тяготения и положил его в основу ОТО, возведя равенство масс в принцип эквивалентности. В соответствии с ним, для наблюдателя в свободно падающем лифте законы физики такие же, как и в инерциальных системах отсчета СТО — действия ускоренного движения и силы тяжести полностью взаимно уничтожаются. «Невесомость» человека в спутнике — проявление принципа эквивалентности. А поиски следствий из этого принципа приводят к ОТО. Если тело выделяет энергию Е в форме излучения, то его масса уменьшается на Е/с2. Масса отражает то, что сохраняется при превращении тел из одного агрегатного состояния в другое.

    1. Движения  планет и законы Кеплера

     Вокруг  Солнца вращаются девять крупных  планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Последние  три планеты не видны невооруженным глазом, и они были открыты недавно — в 1783, 1846 и 1930 гг. соответственно. Недавно была открыта десятая планета Седна, которую причислили к большим планетам, хотя по своим характеристикам она больше подходит к астероидам полосы Эдгеворта—Купера (от 30 до 100 а. е. от Солнца). И. Кеплер, великий немецкий астроном и математик, открыл три закона движения планет. Первые два были получены на основе исследования движения Марса по наблюдениям Тихо Браге и опубликованы в 1609 г.

     Кеплер  установил, что орбита Марса не окружность, а эллипс, в одном из фокусов которого находится Солнце. Такая же закономерность оказалась и для движения других планет. Это и есть первый закон Кеплера (рис. 3.1, а). Большая полуось АВ эллипса равна полусумме (PF + PS) расстояний от любой точки эллипса до его фокусов F и S. Эксцентриситет эллипса равен отношению OS/OB. Наиболее вытянутые орбиты у комет. Эллиптичность наиболее заметна у Меркурия (его эксцентриситет е = 0,21) и Плутона (е = 0,25). Для Земли е = 0,017, т.е. орбита Земли почти окружность (149,6 млн км): в январе она на 2,5 млн км ближе к Солнцу, а в июле на то же расстояние дальше.

     Второй  закон Кеплера: каждая планета движется по своей орбите так, что ее радиус-вектор SP описывает за равные промежутки времени равные площади (рис. 3.1, б). Пары точек Р1 Р2 и Р3, Р4 выбраны так, что отрезки дуг планета проходит за одинаковое время.

     Это значит, что чем ближе планета  к Солнцу, тем больше скорость движения по орбите. Так, Марс вблизи перигелия  движется

     

     со  скоростью 26,5 км/с, а вблизи афелия — 22 км/с. Скорости комет меняются от 500 до 1 км/с. Земля движется со скоростью 29 км/с, причем в январе несколько быстрее.

     Третий  закон движения планет Кеплера (1618) гласит: отношение кубов больших  полуосей орбит двух планет Солнечной системы равно отношению квадратов периодов их обращения вокруг Солнца. Этот закон позволил оценить размеры Солнечной системы. Для круговых орбит это означало, что

     

     Ньютон  при формулировке закона всемирного тяготения использовал эти законы. Он сумел показать, что они выполняются только в случае, если силы, действующие между тяготеющими телами, пропорциональны закону обратных квадратов, а массы сосредоточены в центре масс. Ньютон математически доказал, что тело массы т будет двигаться относительно тела М по одной из кривых — эллипсу, параболе или гиперболе. Эти кривые можно получить, пересекая конус плоскостями под разными углами. Поэтому их называют коническими сечениями. Так что Ньютон обобщил I закон Кеплера.

     Третий  закон Кеплера соответствовал его представлениям о гармонии и физической причинности, выражая связь между мгновенными значениями меняющихся величин. Так в XVII в. фактически был сделан первый шаг к математическому анализу. Кеплер понимал, что открытые им численные закономерности могут стать основой новой небесной механики, но не знал причины именно такого движения планет. Он считал очевидным, что сила, действующая на планеты, должна меняться с расстоянием по закону обратных квадратов, и исходил из внешней аналогии со светом, интенсивность которого меняется как 1/r2. Законы Кеплера подходят и для окружностей, поскольку орбиты планет вытянуты очень мало.

     Вращение  — одно из основных видов движения в поле тяготения, и ему также соответствует определенная энергия. При равномерном движении по окружности скорость v равна длине окружности деленной на период Т, т.е. на время одного оборота. Отсюда для кинетической энергии получим

Информация о работе Закон всемирного тяготения