Адсорбция полимеров на границе раздела

Автор: Пользователь скрыл имя, 12 Марта 2013 в 10:03, реферат

Описание работы

Вследствие этого поверхностные явления в полимерах и полимерных материалах играют существенную роль во всем комплексе их свойств, и прежде всего, в структурно-механических свойствах, а исследование особенностей поведения макромолекул на границе раздела фаз является сейчас одной из важнейших задач в этой области. Говоря о проблеме поверхностных явлений в полимерах, нельзя забывать, что она имеет важное значение не только с технической точки зрения, но и с биологической, поскольку роль поверхностных явлении в биологических процессах, где принимают участие молекулы биополимеров, также очень велика.

Содержание

Введение . . . . . . . . . . . . . . . . . . . . . 3
Адсорбционное взаимодействие на границе раздела фаз и свойства граничных слоев
. . . . . . . . . . . . . . . . . . . . .4
Граничные слои полимеров
на твердых поверхностях . . . . . . . . . . . . . . . . . . . . .5
Влияние адсорбционного взаимодействия на молекулярную подвижность
полимерных цепей в граничных слоях
. . . . . . . . . . . . . . . . . . . . .6
Изменение свойств граничных слоев как следствие уменьшения молекулярной подвижности
. . . . . . . . . . . . . . . . . . . . .9
Влияние твердой поверхности на надмолекулярные структуры полимеров
. . . . . . . . . . . . . . . . . . . .13
О связи адсорбции полимеров с адгезией
полимеров к поверхностям
. . . . . . . . . . . . . . . . . . . .14
Влияние границы раздела на реакции синтеза и структуру трехмерных полимеров
. . . . . . . . . . . . . . . . . . . .16
Заключение . . . . . . . . . . . . . . . . . . . .21
Список использованной литературы . . . . . . . . . . . . . . . . . . . .24

Работа содержит 1 файл

Реферат+Ф...doc

— 258.00 Кб (Скачать)

О СВЯЗИ АДСОРБЦИИ  ПОЛИМЕРОВ С АДГЕЗИЕЙ

ПОЛИМЕРОВ К ПОВЕРХНОСТЯМ

 

Адсорбционное взаимодействие на границе раздела фаз определяет адгезию полимеров к твердой поверхности. При этом следует говорить об адгезии в термодинамическом понимании как о работе, необходимой для преодоления сил сцепления двух различных поверхностей. С этой точки зрения должна существовать определенная связь между адсорбцией полимера на твердой поверхности и его адгезией. К сожалению, хотя во многих работах по исследованию адсорбции провозглашается задача установления связи адсорбции с адгезией, практически нигде такая задача не решалась, т. е. отсутствуют данные по сопоставлению адсорбции с термодинамической работой адгезии. Это может быть связано, прежде всего, с тем, что оценка термодинамической работы адгезии полимера к твердому телу экспериментально чрезвычайно затруднена. Вместе с тем обычно адгезию характеризуют не термодинамической равновесной величиной, а неравновесной работой обрыва.

Между тем отрыв, как  указывает Я. О. Бикерман [12], практически никогда не происходит между двумя материалами. Всякое разрушение адгезионного соединения включает когезионное разрушение, и случаи истинно адгезионного разрушения редки, но даже и тогда отрыв является неравномерным. Поэтому прямое сопоставление найденных в различных работах характеристик адгезии с данными по адсорбции тех же полимеров к тем же поверхностям не может быть использовано для решения вопроса о связи адгезии и адсорбции. Поясним это положение на некоторых примерах.

Известно, что из трех полимеров - желатины, полистирола и  полиметилметакрилата - наибольшую адгезионную прочность при неравновесном разрушении дает желатина. Адсорбция же желатины из растворов на поверхности стекла наименьшая. Фактически эти данные нельзя сравнивать, ибо адгезионная прочность обусловлена здесь другими причинам. Сопротивление разрыву в системе стекло - желатина - стекло превышает прочность склеек стекло - полистирол - стекло, во-первых, потому, что слабый граничный слой между влажной поверхностью стекла и желатиной (гидрофильным полимером) менее вероятен, чем между этой поверхностью и гидрофобным полимером; а во-вторых, потому, что когезионная прочность желатины обычно выше, чем полистирола, и при механическом нарушении склейки полистирола происходит когсзионный отрыв. Как видно из этого примера, ни тот, ни другой случай не имеет прямого отношения к адсорбции. Поэтому в принципе возможно только сравнение данных по адсорбции с термодинамически найденной работой адгезии. Но и здесь мы сталкиваемся со значительными трудностями, не позволяющими делать сравнение.

Действительно, как адсорбция, так н адгезия (в равновесном ее понимании) зависит от характера взаимодействия функциональных групп полимера с поверхностью, формы молекулы и пр. Однако условия возникновения адгезионной связи сильно отличаются от условий взаимодействия полимера и адсорбента в растворе. При адсорбции из растворов происходит конкуренция за места на поверхности между молекулами полимера н растворителя, которая снижает величину адсорбции полимера и прочность его связи с поверхностью.

Адсорбция сильно зависит  от природы растворителя, поскольку последний определяет форму цепи, и. таким образом, условия контакта с поверхностью при адсорбции. При образовании адгезионной связи практически всегда, даже если нанесение склейки идет через стадию раствора, эти факторы исключаются полностью. При нанесении на поверхность растворов полимеров в растворителях, слабо взаимодействующих с поверхностью, адсорбция полимеров является первичным актом образования поверхностной или клеевой пленки.

Если раствори гель активно  взаимодействует с поверхностью, то формирование адгезионного соединения начинается фактически только тогда, когда большая часть растворителя удалена из системы и возможно образование большого числа связей между полимерной молекулой и поверхностью в условиях, когда функциональные группы полимера уже не блокированы растворителем. В этом случае при удалении растворителя в ходе формирования пленки на поверхности происходит постепенное возрастание концентрации раствора и резко изменяется соотношение между сухарным числом взаимодействий полимерных молекул и молекул растворителя с поверхностью. Одновременно происходит и изменение структуры полимера, протекают процессы возникновения и релаксации внутренних напряжений, оказывающие влияние на прочность адгезионной связи [24, 25].

Следовательно, условия, при которых происходит адсорбция  полимеров из растворов, и условия  образования адгсзионной связи  резко отличаются. Еще большим  становится это различие, если адгезионное  соединение получается не из раствора, а любым другим путем. Поэтому экспериментально нельзя установить прямой связи между адсорбцией полимера из раствора и адгезией его к данной поверхности, хотя она, безусловно, существует. Характер адсорбции определяет структуру возникающего на поверхности слоя, которая должна влиять на прочность адгезионной связи. В частности, это относится и к случаю определения адгезионной прочности неравновесными методами, ибо дефекты структуры слоев также связаны с условиями их формирования. При этом следует различать взаимосвязь адсорбции и адгезии (как равновесной характеристики, определяемой термодинамическими соотношениями), а также адсорбции и адгезионной прочности, понимая под последней неравновесную величину, определяемую путем нарушения адгезионной связи в неравновесных условиях.

 

 

ВЛИЯНИЕ ГРАНИЦЫ  РАЗДЕЛА НА РЕАКЦИИ СИНТЕЗА И  СТРУКТУРУ ТРЕХМЕРНЫХ ПОЛИМЕРОВ

 

В настоящее время  благодаря работам школы В. А. Каргина установлено. что процессы возникновения структур в полимерах являются релаксационными процессами, зависящими от молекулярной подвижности структурных элементов цепей. Процессы структурообразования начинаются уже непосредственно в ходе полимеризации, и эти процессы взаимозависимы [26].

При создании полимерных материалов с заданным химическим строением  и физической структурой особое значение имеет получение армированных пластиков н наполненных полимеров, в которых процессы полимеризации н одновременно структурообразования протекают в присутствии сильно развитой поверхности волокнистого или дисперсного наполнителя. Влияние малых количеств наполнителей, служащих центрами структурообразования в кристаллических полимерах, на процессы кристаллизации исследовано в работе [27].

Однако до сих пор  еще мало исследованы процессы структурообразования при полимеризации в присутствии наполнителей, т. е. одновременное влияние поверхности раздела на протекание процессов полимеризации и структурообразования. Между тем эта проблема особенно важна при получении армированных и наполненных полимеров, где процессы полимеризации и структурообразования протекают на границе раздела с твердой поверхностью. В ряде исследований [23, 34] было изучено влияние твердой поверхности на процессы структурообразования при формировании полимерного материала из раствора или расплава и показано, что поверхность наполнителя оказывает существенное влияние на протекание этих процессов и свойства полимеров в граничных слоях.

Существенный интерес  представляет также изучение влияния  наполнителя на протекание реакции  образования трехмерного полимера и его свойства.

Сильно развитая поверхность  наполнителя на начальной стадии реакции может приводить к  возрастанию скорости обрыва реакционных цепей на поверхности, в результате чего густота сетки уменьшается. и сетка становится более дефектной. Очевидно, поверхность наполнителя играет роль своеобразного ингибитора при формировании трехмерной сетки. Действительно, введение ингибитора при полимеризация в начале формирования сетки (при нарастании вязкости системы) привело к увеличению степени набухании полученного в отсутствие наполнителя трехмерного полимера при той же глубине превращения. Следовательно. ингибитор вследствие предотвращения реакции роста и сшивания также приводит к возникновению дефектной трехмерной структуры.

На глубоких стадиях  реакции, вероятно, действует другой механизм, также приводящий к увеличению дефектности сетки. Из-за адсорбции растущих цепей полимера на поверхности наполнителя происходит значительное уменьшение их подвижности, также отражающееся как на скорости роста, так и на скорости обрыва. Все эти факторы способствуют возникновению более дефектной структуры трехмерной сетки.

Экспериментальное подтверждение  влияния поверхности раздела на кинетику образования трехмерных полимеров можно показать на примере кинетики образования трехмерных полиуретанов в объеме и на поверхности [27]. Была изучена кинетика реакции образования полуретановых эластомеров путем сшивания триметилолпропаном макродиизоцианатов, полученных на основе полиоксипропиленгликолей с молекулярными весами 2000 и 1000, а также 4,4-дифенилметандиизоцианата при соотношении 1 : 2. Кинетика образования полимера на медной подложке и в объеме исследовались методом ИК-спектроскопии.

Установлено, что скорость отверждения на подложке меньше для  макродиизоцианата на основе полиэфира с меньшим молекулярным весом, в то время как в объеме для этого макродиизоцианата скорость выше. Поведение в объеме согласуется с тем,  что уменьшение молекулярного веса полиэфира приводит к росту концентрации реакционноспособных изоцианатных групп в единице объема. Аномальное протекание реакции на поверхности может быть связано с тем, что увеличение концентрации сильно полярных групп NCО значительно увеличивает взаимодействие с подложкой исходного макродиизоцианата и образующегося полиуретана, которое существенно понижает подвижность цепей на поверхности для макродиизоцианата на основе полиэфира с меньшим молекулярным весом. Однако общая скорость реакции из поверхности в обоих случаях выше, чем в объеме. Это объясняется тем, что адсорбционное взаимодействие макродиизоцианатов с поверхностью приводит к определенной степени упорядоченности молекул друг относительно друга в поверхностном слое. Такая упорядоченность, согласно [28] способствует полимеризации и может приводить к возрастанию общей скорости процесса.

Таким образам, граница  раздела оказывает двоякое влияние  на процессы синтеза и структурообразования в трехмерных полимерах. увеличивая вероятность реакции обрыва на начальных стадиях реакции и затрудняя обрыв на более глубоких стадиях вследствие адсорбционного взаимодействия растущих цепей с поверхностью, которое, в свою очередь, влияет на скорость реакции и структуру сетки. В результате можно считать, что такая важная характеристика сетки, как эффективная плотность сшивки, учитывающая физические и химические узлы сетки, оказывается различной для случаев проведения реакции в присутствии и в отсутствие границы раздела с наполнителем. Это положение особенно хорошо иллюстрируется на примере изучения системы, в которой вклад физических узлов в эффективную густоту сетки очень велик по сравнению с вкладом химических узлов, а именно, на примере трехмерных полиуретанов [29]. В табл. 3 приведены найденные значения Мс - молекулярного веса отрезка цепей между эффективными узлами сетки.

Как видно из таблицы 3, эффективная плотность сетки для пленок, находящихся на подложке, в большинстве случаев выше, чем для свободных пленок. С другой стороны, нет симбатности в изменении густоты химической сетки, задаваемой соотношением NСО/OН и физической густотой сетки (суммарной), что говорит о сложной взаимозависимости между химической структурой сетки, определяемой числом функциональных групп, участвующих в реакции, и строением сетки, обусловленные общим числом узлов.

Таблица 3.

Величины Мс и nс/V для полиуретановых покрытий.

Полиэфир

NCO : OH

Свободная пленка

Пленка на подложке

Мс

nс/V

Мс

nс/V

Диэтиленгликольадипинат, мол. вес 800

2:1

620

21,0

210

61,0

1,75:1

970

13,4

130

100

1,50:1

510

25,4

200

64,8

Поликсипропиленгликоль, мол. вес 2000

2:1

520

21,3

460

23,7

750

2:1

290

43,1

200

60,6

550

2:1

120

109

180

75


 

Прежде всего увеличение эффективной плотности сетки для пленок, находящихся на подложке, указывает на то, что адсорбция растущих цепей на поверхности в ходе реакции приводит к образованию дополнительных узлов сетки. Их число, в свою очередь, зависит от расстояния между химическими узлами сетки: чем оно больше, тем больше гибкость отрезка цепи между узлами и приспосабливаемость отрезков цепей к поверхности. При наибольшем Мс в свободных пленках наблюдается наименьшее Мс в пленке на поверхности (см. табл. 3).

Таким образом, различия в химической густоте сетки отражаются на свойствах пленок в свободном виде и на подложке. Отметим, что такие эффекты не могли наблюдаться для сополимеров стирола с дивинилбензолом, в которых отсутствуют функциональные группы, способные к сильному взаимодействию с поверхностью. В табл. 3 приведены также данные по влиянию молекулярного веса исходного полиэфира на эффективную плотность сшивки при одинаковом исходном соотношении NСО/ОН. С увеличением молекулярного веса полиэфира эффективная плотность сшивки уменьшается как для свободных пленок, так и для пленок на подложке, что связано с уменьшением общей концентрации активно взаимодействующих с поверхностью функциональных групп.

Информация о работе Адсорбция полимеров на границе раздела