Поляризация диэлектриков

Автор: Пользователь скрыл имя, 08 Апреля 2012 в 16:59, доклад

Описание работы

• Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с).
• Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с.
• Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.
• Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.
• Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.
• Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.
• Самопроизвольная (спонтанная) — благодаря наличию этого типа поляризации в диэлектрике проявляются нелинейность свойств. Отличается очень высокими значениями диэлектрической проницаемости. Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10−2)
• Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.
• Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Работа содержит 1 файл

поляризация диэлектриков.doc

— 37.00 Кб (Скачать)


поляризация диэлектриков

поляризация диэлектриков

поляриза́ция диэле́ктриков

1) смещение электрических зарядов в диэлектрике под действием приложенного электрического поля. Может осуществляться благодаря сдвигу ионов относительно друг друга, деформации электронных оболочек отдельных атомов, молекул, ионов либо ориентации электрических диполей, существовавших в диэлектрике и в отсутствие электрического поля. 2) Электрический дипольный момент единицы объёма диэлектрика.

* * *

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ

ПОЛЯРИЗА́ЦИЯ ДИЭЛЕ́КТРИКОВ,
2) Процесс образования объемного дипольного электрического момента (смещение электрических зарядов) в диэлектрике (см. ДИЭЛЕКТРИКИ).
Поляризацией диэлектрика называют состояние, характеризующееся наличием электрического момента у любого элемента его объема. Различают поляризацию, возникающую под действием внешнего электрического поля, и спонтанную (самопроизвольную), существующую в отсутствии поля. В некоторых случаях поляризация диэлектриков проявляется под действием механических напряжений. Способность различных материалов поляризоваться в электрическом поле характеризуется относительной диэлектрической проницаемостью (см. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ). Осуществляется благодаря сдвигу ионов относительно друг друга, деформации электронных оболочек отдельных атомов, молекул, ионов, либо ориентации электрических диполей, существовавших в диэлектрике и в отсутствие электрического поля. Существует несколько видов поляризации, отличающихся своим механизмом и свойствами.

Электронная поляризация
Представляет собой упругое смещение и деформацию электронных оболочек атомов и ионов. Центр орбиты электрона смещается на расстояние, которое зависит от напряженности поля E и резонансной частоты атома. Время установления электронной поляризации ничтожно мало (около10-15с), поэтому электронную поляризацию условно называют мгновенной: запаздывания поляризации по отношению к изменению электрического поля не наблюдается. Электронная поляризация происходит без потерь энергии (как бы упругая деформация), в диэлектрике имеется только емкостная составляющая тока. Поляризуемость частиц при электронной поляризации не зависит от температуры, а диэлектрическая проницаемость уменьшается с повышением температуры в связи с тепловым расширением диэлектрика и уменьшением числа частиц в единице объема.

Ионная поляризация
Характерна для твердых тел с ионным строением и обусловлена смещением упруго связанных ионов на расстояния в пределах кристаллической решетки. Наблюдается в твердых телах с ионной кристаллической решеткой. Смещение токов происходит по малым расстояниям за счет упругой деформации решетки. Смещению ионов под действием поля препятствуют упругие силы химической связи. Смещение двух разноименно заряженных ионов приводит к появлению элементарного электрического момента. Сумма таких элементарных моментов, приходящихся на единицу объема, определяет ионный вклад в поляризованность диэлектрика. С повышением температуры расстояния между ионами вследствие теплового расширения материала увеличиваются. В большинстве случаев это сопровождается ослаблением сил упругой связи и возрастание поляризованности диэлектрика. Время установления ионной поляризации — порядка 10-13с.

Ионно-релаксационная поляризация.
Наблюдается в ионных диэлектриках с неплотной упаковкой ионов, например, в неорганических стеклах и в некоторых кристаллических веществах. Ионно-релаксационная поляризация это переброс в твердом диэлектрике на другое место слабо закрепленных в решетке ионов. Это происходит при достаточной тепловой подвижности ионов, когда они отрываются от своего места в решетке и закрепляются в другом, недалеко от своего места. После снятия электрического поля ионы постепенно возвращаются к центрам равновесия, т.е. этот механизм можно отнести к релаксационной поляризации, при которой имеет место необратимое рассеяние энергии. Свойства ионно-релаксационной поляризации близки к свойствам дипольной поляризации.

Дипольная поляризация.
Отличается от электронной и ионной тем, что дипольные молекулы, находящиеся в хаотическом тепловом движении, частично ориентируются под действием поля, что и является причиной поляризации. Возможна, если молекулярные силы не мешают диполям ориентироваться вдоль электрического поля. У симметричных неполярных молекул (H2, O2, N2)под действием электрического поля возникает упругая поляризация. У некоторых несимметричных полярных молекул (CO, HCl, NH) центры зарядов сдвинуты друг относительно друга, так что такая молекула имеет собственный постоянный момент. Так как векторы дипольных моментов в отсутствии электрического поля ориентированы хаотически, суммарный дипольный момент диэлектрика равен нулю. Внешнее электрическое поле стремится ориентировать дипольные моменты молекул параллельно вектору Е (тепловое движение этому противодействует), так что вещество в целом приобретает отличный от нуля дипольный момент. Такая поляризуемость называется ориентационной. С увеличение температуры молекулярные силы ослабляются, что должно усиливать поляризацию, однако в то же время возрастает энергия теплового движения молекул, что уменьшает ориентирующее влияние поля. Поэтому температурное изменение диэлектрической проницаемости при дипольно-релаксационной поляризации характеризуется наличием максимума. Такая поляризация свойственна полярным жидкостям, может наблюдаться и в твердых полярных органических веществах. Но в этом случае поляризация обычно обусловлена уже поворотом не самой молекулы, а имеющихся в ней полярных радикалов по отношению к молекуле. Такую поляризацию называют дипольно-радикальной (например, в целлюлозе (см. ЦЕЛЛЮЛОЗА (полисахарид)) полярность объясняется наличием гидроксильных групп –ОН и кислорода). В кристаллах с молекулярной решеткой и слабыми ван-дер-ваальсовыми связями возможна ориентация и более крупных частиц.

Миграционная поляризация
Имеет место в двух- и многослойных диэлектриках, обладающих разными значениями диэлектрической проницаемости. Характеризуется большой инертностью и потерями. В граничных слоях слоистых материалов и в приэлектродных слоях может быть накопление зарядов медленно движущихся ионов, что создает эффект медленно движущейся поляризации.

Остаточная поляризация
Характерна для веществ, называемых электретами (см. ЭЛЕКТРЕТЫ). Эти вещества способны сохранять поляризованное состояние и при снятии электрического поля.
2). Электрический дипольный момент единицы объема диэлектрика.

 



Информация о работе Поляризация диэлектриков