Применение интерференции света

Автор: Пользователь скрыл имя, 16 Января 2011 в 13:23, реферат

Описание работы

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны До- Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопии).

Работа содержит 1 файл

Применение интерференции света.docx

— 86.80 Кб (Скачать)

        Применение интерференции  света 

      Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины  волны До- Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопии).

      Явление интерференции применяется также  для улучшения качества оптических приборов (просветление оптики) и получения  высокоотражающих покрытий. Прохождение света через каждую преломляющую поверхность линзы, например через границу стекло - воздух, сопровождается отражением »4% падающего потока (при показа теле преломления стекла »1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и светосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.

      Для устранения указанных недостатков  осуществляют так называемое просветление оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показателем преломления, меньшим, чем у материала линзы. При отражении света от границ раздела воздух - пленка и пленка - стекло возникает интерференция когерентных лучей 1¢ и 2' (рис. 253).  

               Просветляющий слой

      

                              Рис. 253 

      Толщину пленки d и показатели преломления стекла nс и пленки n можно подобрать так, чтобы волны, отраженные от обеих поверхностей пленки, гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода равна - (см. (172.3)). Расчет показывает, что амплитуды отраженных лучей равны, если

                      (175.1)

        Так как nс, n и показатель преломления воздуха n0 удовлетворяют условиям nс > n > n0, то потеря полуволны происходит на обеих поверхностях; следовательно, условие минимума (предполагаем, что свет падает нормально, т. е. I = 0)

              

где nd - оптическая толщина пленки. Обычно принимают m = 0, тогда

                 

        Таким образом, если выполняется условие (175.1) и оптическая толщина пленки равна l0/4, то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны l0 » 0,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

      Создание  высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции. В отличие от двулучевой интерференции, которую мы рассматривали до сих пор, многолучевая интерференция возникает при наложении большого числа когерентных световых пучков. Распределение интенсивности в интерференционной картине существенно различается; интерференционные максимумы значительно уже и ярче, чем при наложении двух когерентных световых пучков. Так, результирующая амплитуда световых колебаний одинаковой амплитуды в максимумах интенсивности, где сложение происходит в одинаковой фазе, в N раз больше, а интенсивность в N2 раз больше, чем от одного пучка (N - число интерферирующих пучков). Отметим, что для нахождения результирующей амплитуды удобно пользоваться графическим методом, используя метод вращающегося вектора амплитуды (см. § 140). Многолучевая интерференция осуществляется в дифракционной решетке (см. § 180).

      Многолучевую  интерференцию можно осуществить  в многослойной системе чередующихся пленок с разными показателями преломления (но одинаковой оптической толщиной, равной l0/4), нанесенных на отражающую поверхность (рис. 254). Можно показать, что на границе раздела пленок (между двумя слоями ZnS с большим показателем преломления n1 находится пленка криолита с меньшим показателем преломления n2) возникает большое число отраженных интерферирующих лучей, которые при оптической толщине пленок l0/4 будут взаимно усиливаться, т. е. коэффициент отражения возрастает. Характерной особенностью такой высокоотражательной системы является то, что она действует в очень узкой спектральной области, причем чем больше коэффициент отражения, тем уже эта область. Например, система из семи пленок для области 0,5 мкм дает коэффициент отражения r » 96% (при коэффициенте пропускания » 3,5% и коэффициенте поглощения <0,5%). Подобные отражатели применяются в лазерной технике, а также используются для создания интерференционных светофильтров (узкополосных оптических фильтров). 

                                

                                    Рис.254 

      Явление интерференции также применяется  в очень точных измерительных  приборах, называемых интерферометрами. Все интерферометры основаны на одном  и том же принципе и различаются лишь конструкционно. На рис. 255 представлена упрощенная схема интерферометра Майкельсона.

                               

      Монохроматический свет от источника S падает под углом 45° на плоскопараллельную пластинку Р1. Сторона пластинки, удаленная от S, посеребренная и полупрозрачная, разделяет луч на две части: луч 1 (отражается от посеребренного слоя) и луч 2 (проходит через вето). Луч 1 отражается от зеркала М1 и, возвращаясь обратно, вновь проходит через пластинку Р1 (луч l'). Луч 2 идет к зеркалу М2, отражается от него, возвращается обратно и отражается от пластинки Р1 (луч 2¢). Так как первый из лучей проходит сквозь пластинку Р1 дважды, то для компенсации возникающей разности хода на пути второго луча ставится пластинка Р2 (точно такая же, как и Р1, только не покрытая слоем серебра).

      Лучи 1¢ и 2' когерентны; следовательно, будет наблюдаться интерференция, результат которой зависит от оптической разности хода луча 1 от точки О до зеркала М1 и луча 2 от точки О до зеркала М2. При перемещении одного из зеркал на расстояние l0/4 разность хода обоих лучей увеличится на l0/2 и произойдет смена освещенности зрительного поля. Следовательно, по незначительному смещению интерференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка 10-7 м) измерения длин (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр)).

      Российский  физик В. П. Линник (1889-1984) использовал принцип действия интерферометра Майкельсона для создания микроинтерферометра (комбинация интерферометра и микроскопа), служащего для контроля чистоты обработки поверхности.

      Интерферометры - очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления  прозрачных тел (газов, жидких и твердых  тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных  рефрактометров. На пути интерферирующих лучей располагаются две одинаковые кюветы длиной l, одна из которых заполнена, например, газом с известным (n0), а другая - с неизвестным (nz) показателями преломления. Возникшая между интерферирующими лучами дополнительная оптическая разность хода D = (nz – n0)l. Изменение разности хода приведет к сдвигу интерференционных полос. Этот сдвиг можно характеризовать величиной

              

где m0 показывает, на какую часть ширины интерференционной полосы сместилась интерференционная картина. Измеряя величину m0 при известных l, m0 и l, можно вычислить nz, или изменение nz - n0. Например, при смещении интерференционной картины на 1/5 полосы при l = 10 см и l = 0,5 мкм (nz – n0) = 10-6, т.е. интерференционные рефрактометры позволяют измерять изменение показателя преломления с очень высокой точностью (до 1/1 000 000).

      Применение  интерферометров очень многообразно. Кроме перечисленного, они применяются  для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впервые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени. 
 
 
 
 

Применение  интерференции. 

      Явление интерференции волн находит разнообразное  применение. Рассмотрим лишь некоторые  примеры применения интерференции.       

 ·     Тот факт, что расположение интерференционных полос зависит от длины волны и разности хода лучей, позволяет по виду интерференционной картины (или их смещению) проводить точные измерения расстояний при известной длине волны или, наоборот, определять спектр интерферирующих волн (интерференционная спектроскопия). Для осуществления таких измерений разработаны различные схемы высокоточных измерительных приборов, называемых интерферометрами (двух- и многолучевые) (рис. 8.9). Незначительное перемещение одного из зеркал интерферометра приводит к смещению интерференционной картины, что можно использовать для измерения длин с точностью до . Измерения с помощью интерферометра Майкельсона привели к фундаментальным изменениям представлений о пространстве и времени. Доказали отсутствие эфира. Послужили основой специальной теории относительности.      

 ·     По интерференционной картине можно выявлять измерять неоднородности среды (в т.ч. фазовые), в которой распространяются волны, или отклонения формы поверхности от заданной.      

 ·     Явление интерференции волн, рассеянных от некоторого объекта (или прошедших через него) с «опорной» волной, лежит в основе голографии (в т.ч. оптической, акустической или СВЧ-голографии).       

 ·     Интерференционные волны от отдельных «элементарных» излучателей используются при создании сложных излучающих систем (антенн) для электромагнитных и акустических волн.      

 ·     Просветление оптики и получение высокопрозрачных покрытий и селективных оптических фильтров. Одной из важных задач, возникающих при построении различных оптических и антенных устройств СВЧ-диапазона, является уменьшение потерь ( ) интенсивности света, мощности потока электромагнитной энергии при отражении от поверхностей линз, обтекателей антенн и пр. приборов, используемых для преобразований световых и радиоволн в разнообразных приборах фотоники, оптоэлектроники и радиоэлектроники. Для уменьшения потерь на отражение используется покрытие оптических деталей (линз) 3 пленкой 2 со специальным образом подобранными толщиной δ и показателем преломления n     (рис. 8.14).

Рис. 8.14                                                    Рис. 8.15      

Идея уменьшения интенсивности отраженного света  от поверхности оптических деталей  состоит в интерференционном  гашении волны, отраженной от внешней  поверхности детали 1, волной отражённой от внутренней 2. Для осуществления этого амплитуды обеих волн должны быть равны, а фазы отличаться на 180°. В этом случае обеспечивается гашение отражённой волны. Необходимое соотношение между фазами отражённых волн обеспечивается выбором толщины плёнки δ, кратной нечётному числу четвертей длины волны проходящего через рассматриваемую деталь света:              

  .                  (8.6.1)      

Таким образом, если выполняется условие (8.6.1), то в  результате интерференции наблюдается  гашение отраженных лучей.       

Так как добиться одновременного гашения для всех длин волн невозможно, то его делают для . Поэтому объективы с просветленной оптикой кажутся голубыми.      

 ·     Получение высокоотражающих диэлектрических зеркал      

Значительно повысить коэффициент отражения R зеркал можно, используя последовательность чередующихся диэлектрических слоев с высоким  и низким  показателями преломления (рис. 8.15).      

Информация о работе Применение интерференции света