Шпоргалка по "Физике"

Автор: Пользователь скрыл имя, 10 Марта 2013 в 16:39, шпаргалка

Описание работы

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |Dr| равен пройденному пути Ds.
Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Работа содержит 1 файл

физика шпоры 1-й сем.doc

— 1.32 Мб (Скачать)

Дифференциальное  уравнение свободных затухающих колебаний линейной системы задается в виде

где s — колеблющаяся величина, описывающая тот или иной физический процесс, d=const — коэффициент затухания, w0 — циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при d=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Решение уравнения   (146.1)   рассмотрим в виде

s=e-du (146.2)

где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим

Решение уравнения (146.3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай, когда этот коэффициент положителен:

w2=w20-d2 (146.4)

(если (w2-d2)>0, то такое обозначение мы вправе сделать). Тогда получим уравнение типа (142.1)

решением которого является функция и=А0cos(wt+j)

(см. (140.1)).

Таким образом, решение  уравнения (146.1) в случае малых затуханий (d2<<w20)

s=A0е-dtсоs(wt+j),       (146.5) где А=А0е-dt (146.6)

— амплитуда  затухающих   колебаний,   а

a0 — начальная амплитуда. Зависимость (146.5) показана на рис.208 сплошной линией, а зависимость (146.6) — штриховыми линиями. Промежуток времени t=1/d, в течение которого амплитуда затухающих колебаний уменьшается в е раз, называется временем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колебания не являются периодическими и, строго говоря, к ним неприменимо понятие периода или частоты. Однако если затухание мало, то можно условно пользоваться понятием периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины (рис. 208). Тогда период затухающих колебаний с учетом формулы

(146.4) равен

 

Если A(t) и A(t+T)— амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его

логарифм

— логарифмическим  декрементом затухания; Ne — число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

Для характеристики колебательной  системы пользуются понятием добротности Q, которая при малых значениях логарифмического декремента равна

(так как затухание  невелико (d2<<w20), то Т принято равным Т0).

Из формулы (146.8) следует, что добротность пропорциональна числу колебаний Ne, совершаемых системой за время релаксации.

Применим выводы, полученные для свободных затухающих колебаний  линейных систем, для колебаний различной физической природы — механических (в качестве примера рассмотрим пружинный маятник) и электромагнитных (в качестве примера рассмотрим электрический колебательный контур).

1. Свободные  затухающие колебания пружинного  маятника. Для пружинного маятника (см. § 142) массой т, совершающего малые колебания под действием упругой силы F=-kx, сила трения пропорциональна скорости, т. е.

 

 

231

где r — коэффициент сопротивления; знак минус указывает на противоположные направления силы трения и скорости.

При данных условиях закон  движения маятника будет иметь вид

Используя формулу w0=Ök/m (см. (142.2)) и принимая, что коэффициент затухания

d=r/(2m), (146.10)

получим идентичное уравнению (146.1) дифференциальное уравнение затухающих колебаний, маятника:

Из выражений (146.1) и (146.5) вытекает, что маятник колеблется по закону

х=A0е-dtcos(wt+j) с        частотой        w=Ö(w20-r2/4m2)    (см. (146.4)).

Добротность    пружинного    маятника,

согласно (146.8) и (146.10), Q=1/rÖkm.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19. Вынужденные колебания,

колебания, возникающие в какой-либо системе под действием переменной внешней силы (например, колебания мембраны телефона под действием переменного магнитного поля, колебания механической конструкции под действием переменной нагрузки и т.д.). Характер В. к. определяется как характером внешней силы, так и свойствами самой системы. В начале действия периодической внешней силы характер В. к. изменяется со временем (в частности, В. к. не являются периодическими), и лишь по прошествии некоторого времени в системе устанавливаются периодические В. к. с периодом, равным периоду внешней силы (установившиеся В. к.). Установление В. к. в колебательной системе происходит тем быстрее, чем больше затухание колебаний в этой системе.

 

  В частности, в  линейных колебательных системах  при включении внешней силы в системе одновременно возникают свободные (или собственные) колебания и В. к., причём амплитуды этих колебаний в начальный момент равны, а фазы противоположны (рис.). После постепенного затухания свободных колебаний в системе остаются только установившиеся В. к.

 

  Амплитуда В. к.  определяется амплитудой действующей  силы и затуханием в системе.  Если затухание мало, то амплитуда  В. к. существенно зависит от  соотношения между частотой действующей  силы и частотой собственных  колебаний системы. При приближении частоты внешней силы к собственной частоте системы амплитуда В. к. резко возрастает — наступает резонанс. В нелинейных системах разделение на свободные и В. к. возможно не всегда.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20. Математический  маятник

Математический маятник— это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити.

Момент инерции математического  маятника J=ml2, (142.8)

где l — длина маятника.

Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (142.7), получим выражение для периода малых колебаний математического маятника

T=2pÖl/g. (142.9)

Сравнивая формулы (142.7) и (142.9), видим, что если приведенная  длина L физического маятника равна длине l математического маятника, то их периоды колебаний одинаковы. Следовательно, приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21. Физический  маятник

Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходящей через центр масс тела (рис.201).

Если маятник отклонен из положения равновесия на некоторый  угол а, то в соответствии с уравнением динамики вращательного движения твердого тела (18.3) момент М возвращающей силы можно записать в виде

где У — момент инерции  маятника относительно оси, проходящей через точку О, l — расстояние между точкой подвеса и центром масс маятника, Ft=-mgsina»mga — возвращающая сила (знак минус обусловлен тем, что направления Ft и a всегда противоположны; sina»a соответствует малым колебаниям маятника, т. е. малым отклонениям маятника из положения равновесия).

Уравнение    (142.4)    можно   записать в виде

Принимая

w0=Ömgl/J. (142.5) получим уравнение

идентичное  с   (142.1),  решение  которого (140.1)  известно:

a=a0cos(w0t+j). (142.6)

Из выражения (142.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой w0 (см (142.5)) и периодом

Т = 2p/w0=2pÖJ/(mgl)=2pÖL/g.

(142.7)

где L = J/(ml) — приведенная длина физического маятника.

Точка О' на продолжении прямой ОС, отстоящая от оси подвеса на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), получим

т. е. ОО' всегда больше ОС. Точка подвеса О и центр качаний О' обладают свойством взаимозаменяемости: если ось подвеса перенести в центр качаний, то точка О прежней оси подвеса станет новым центром качаний и период колебаний физического маятника не изменится.

 

 

 

 

 

 

 

 

22. Сложение гармонических колебаний одного направления и одинаковой частоты. Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты

воспользовавшись методом  вращающегося вектора амплитуды (см. § 140). Построим векторные диаграммы этих колебаний (рис.203). Так как векторы a1 и А2 вращаются с одинаковой угловой скоростью w0, то разность фаз (j2-j1) между ними остается постоянной.

Очевидно, что уравнение  результирую-

 

 

226

щего колебания будет

х=х12=Аcos(w0t+j). (144.1)

В выражении (144.1) амплитуда А и начальная фаза j соответственно задаются соотношениями

Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (j2-j1) складываемых колебаний.

Проанализируем выражение (144.2) в  зависимости от разности фаз (j2-j1):

1) j2-j1=±2mp (m = 0, 1, 2,...), тогда A=A1+A2, т.е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;

2) j2-j1= ±(2m+1)p (m=0, 1, 2,...), тогда A = │A1-A2│, т.е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний.

 

 

 

 

 

23.Биения (Продолжение 22)

Для практики особый интерес  представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. В результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями.

Пусть амплитуды складываемых колебаний равны А, а частоты равны w и w+Dw, причем Dw<<w. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:

Складывая эти выражения  и учитывая, что во втором сомножителе Dw/2<<w, найдем

Получившееся выражение  есть произведение двух колебаний. Так как Dw<<w, то сомножитель, стоящий в скобках, почти не изменяется, когда сомножитель coswt совершит несколько полных колебаний. Поэтому результирующее колебание х можно рассматривать как гармоническое

 

 

 

227

с частотой w, амплитуда Аб, которого изменяется по следующему периодическому закону:

Частота изменения Aб, в два раза больше частоты изменения косинуса (так как берется по модулю), т.е. частота биений равна разности частот складываемых колебаний: wб=Dw. Период биений

Tб=2p/Dw.

Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии дают график результирующего колебания (144.3), а огибающие их — график медленно меняющейся по уравнению (144.4) амплитуды.

Определение частоты тона (звука определенной высоты (см. §158)) биений между эталонным и измеряемым колебаниями — наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.

Любые сложные периодические  колебания s=f(t) можно представить в виде суперпозиции одновременно совершающихся гармонических колебаний с различными амплитудами, начальными фазами, а также частотами, кратными циклической частоте w0:

Представление периодической  функции в виде (144.5) связывают  с понятием гармонического анализа сложного периодического колебания, или разложения Фурье.

Члены ряда Фурье, определяющие гармонические колебания с частотами w0, 2w0, 3w0,..., называются первой (или основной),

Информация о работе Шпоргалка по "Физике"