Сила трения. Способы уменьшения трения

Автор: Пользователь скрыл имя, 24 Февраля 2012 в 12:12, реферат

Описание работы

С трением мы сталкиваемся на каждом шагу. Вернее было бы сказать, что без трения мы и шагу ступить не можем. Но, не смотря на ту большую роль, которую играет трение в нашей жизни, до сих пор не создана достаточно полная картина возникновения трения. Это связано даже не с тем, что трение имеет сложную природу, а скорее с тем, что опыты с трением очень чувствительны к обработке поверхности и поэтому трудно воспроизводимы.

Содержание

Введение--------------------------------------------------------------------------------------------------3-4
1. Трение и их Классификация ----------------------------------------------------------------------4-6
2.Трение покоя-------------------------------------------------------------------------------------------7-9
3. Трение скольжение------------------------------------------------------------------------------------9
4.Трение качения-----------------------------------------------------------------------------------------10
5. Внутреннее жидкостное (вязкое) трение-----------------------------------------------------10-12
6 Способы уменьшения трения------------------------------------------------------------------12-13
6.1. Фрикционные автоколебания----------------------------------------------------------------13-14
6.1.Вибрационное сглаживание-------------------------------------------------------------------14-16
Заключение------------------------------------------------------------------------------------------------16

Работа содержит 1 файл

сила трения.doc

— 129.50 Кб (Скачать)

где fп – безразмерный коэффициент пропорциональности, называемый коэффициентом трения покоя. Значение этого коэффициента зависит от материала и состояния трущихся поверхностей.

Определить значение коэффициента трения покоя можно следующим образом. Пусть тело (плоский брусок) лежит на наклонной плоскости АВ (рис.1). На него действуют три силы: сила тяжести F, сила трения покоя Fп и сила реакции опоры N. Нормальная составляющая Fп силы тяжести представляет собой силу давления Fд, производимого телом на опору, т. Е.

FН=Fд.    (2.20)

Тангенциальная составляющая Fт силы тяжести представляет собой силу, стремящуюся сдвинуть тело вниз по наклонной плоскости.

При малых углах наклона a сила Fт уравновешивается силой трения покоя Fп и тело на наклонной плоскости покоится (сила N реакции опоры по третьему закону Ньютона равна по модулю и противоположна по направлению силе Fд, т. Е. уравновешивает ее).

Будем увеличивать угол наклона a до тех пор, пока тело не начнет скользить вниз по наклонной плоскости. В этот момент Fт=Fпmax    (2.21)

 

 

9

Подставив в формулу (2.19) выражения (2.20) и (2.21), получим

fп=Fт/Fн    (2.22)

На  рис. Видно, что

Fт=Fsin = mg sin; Fн=Fcos = mg cos.

Подставив эти значения Fт  и  Fн в формулу (2.22), получим

fн=sin/cos=tg.    (2.23)

Измерив угонл , при котором начинается скольжение тела, можно по формуле (2.25) вычислить зачение коэффициента трения покоя fп.

 

Трение скольжение

Трение скольжения возникает при скольжении одного твердого тела по поверхности другого. Закон для трения скольжения имеет вид

Fc= fcN,     (2.24)

где Fc – модуль силы трения скольжения; fc – безразмерный коэффициент трения скольжения; N – модуль силы реакции опоры. Значение fc зависит от того, из каких веществ изготовлены трущиеся поверхности и от качества их обработки. Если сделать поверхности более гладкими, значение fc уменьшится. Однако уменьшать шероховатость поверхностей можно лишь до определенного предела, так как при очень гладких (например, полированных) поверхностях значение fc вновь увеличивается. Происходит это потому, что молекулы тел с гладкими поверхностями близко подходят друг к другу и силы молекулярного притяжения между ними вызывают «прилипание» тел, препятствующее их скольжению. Трение качения возникает при качении (без скольжения) твердых тел круглой формы по поверхности других твердых тел.

 

10

Трение качение

Причина появления трения качения заключается в следующем. Под действием силы твердых тяжести круглое твердое тело (например, шар или колесо), находящееся на плоской поверхности, деформируется, вследствие чего оно опирается не на одну точку, а на площадку больших или меньших размеров. Это приводит к тому, что, когда тело начинает катиться, точка А приложения реакции опоры смещается немного вперед от вертикали, проходящей через центр тяжести тела, а линия действия силы реакции опоры R XXXассXXXщееется немного назад от этой вертикали (рис. 24). При этом нормальная составляющая Rн = N реакции опоры компенсирует силу тяжести F (т.е. Rн =-F), а не скомпенсированная тангенциальная составляющая Rт реакции опоры направлена против движения тела и играет роль силы трения качения Fк. Модуль силы трения качения Fк определяют по закону

Fк = Kк·N/r     (2.25)

где Kк-безразмерный коэффициент трения качения; N=Rн – модуль нормальной составляющей силы реакции опоры; r – радиус катящегося тела.

Если мы сравним между собой коэффициенты всех видов внешнего трения для каких-либо двух материалов, из которых изготовлены соприкасающиеся тела, то увидим, что fп>fc>Kk, т. Е. при прочих равных условиях наибольшим является трение покоя, а наименьшим – трение качения.

Внутреннее жидкостное (вязкое) трение

Движению тела в жидкости и газе препятствует сила жидкого трения. Главное отличие жидкого трения от сухого – отсутствие зоны застоя. Величина силы вязкого трения пропорциональна скорости относительного движения V тел,
пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.

F= - VS/h 

 

11

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости.

В жидкости или газе не возникает силы трения покоя, и поэтому даже малая внешняя сила способна вызвать движение тела. Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды.
При этом участки среды (жидкости или газа), непосредственно прилегающие к XXXассXXXщеемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности. Сила сопротивления среды зависит от ее вязкости, от формы тела, от скорости движения тела относительно среды. Например, при медленном движении шарика в вязкой жидкости силу трения можно найти, используя формулу Стокса:

F= - 6RV     

Пропорциональность силы трения, скорости движения тела в среде выполняется только при малых скоростях движения. Критерием малости служит безразмерное число Рейнольдса:

Re=VR

Здесь  - плотность среды, а R- характерный размер тела. Для шара таким размером является его радиус. Для тела определенной формы существует максимальное (критическое) число Рейнольдса, при котором трение остается вязким, например, для шара это число 100. При больших скоростях движения, характер силы трения меняется,  величина силы трения перестает быть пропорциональной скорости движения тела.

.Сила сопротивления, возникающая в жидкости или газе, всегда направлена против движения тела, по касательной к его поверхности и зависит от скорости движения тела.

При небольших скоростях движения сила сопротивления Fc пропорциональна скорости, а при больших скоростях – Fc пропорциональна квадрату скорости.

 

 

12

В газах, из-за их малой плотности, тело может развить большую скорость, поэтому сила сопротивления Fc=-k1v2. В жидкостях плотность вещества велика, тело не может развить большую скорость, а потому Fc=-k2v. В последних формулах коэффициенты пропорциональности k1 и k2 зависят от рода жидкости или газа и их температуры.

Наблюдения показывают, что сила сопротивления движению в жидкостях или газах в значительной степени зависит также от формы движущегося тела. Геометрическую форму тела, при которой сила сопротивления движению со стороны среды мала, принято называть обтекаемой.

Способы уменьшения трения                                                                                                       

С целью уменьшения внешнего трения между соприкасающимися поверхностями твердых тел вводят смазку, т. Е. вязкую жидкость, которая прилипает к твердым телам и образует между их поверхностями слой большей или меньшей толщины. При этом трение возникает уже не между твердыми телами, а между слоями смазки, что и приводит к значительному уменьшению силы трения. Внешнее трение называют сухим, если смазка вообще отсутствует, при отсутствии смазки сила сопротивления не падает сразу с уровня силы трогания до кулоновой силы, а возникает постепенное падение силы с ростом скорости – эффект, противоположный гидродинамической вязкости. При  наличии достаточно толстого слоя смазки, обеспечивающего отсутствие непосредственного контакта трущихся поверхностей, сила трения определяется только свойствами (гидродинамикой) смазочного слоя. Сила статического трогания равна нулю, а с ростом скорости сила сопротивления движению увеличивается. Если же смазки недостаточно, то действуют все три механизма: сила статического сопротивления страгивания с места; кулонова сила и сила вязкого сопротивленияг; граничный, если слой смазки очень тонкий. Другой способ уменьшения трения – замена скольжения качением: применение колес, катков, шариковых и роликовых подшипников. Коэффициент трения качения в десятки раз меньше коэффициента скольжения существенно, что сила трения качения обратно пропорциональна радиусу XXXатящегося тела. В связи с этим у транспорта, предназначенного для движения по плохим дорогам, колеса имеют большой радиус.

 

 

13

В большинстве традиционных механизмов (автомобили, зубчатые шестерни и пр.) для уменьшения силы трения используются различные натуральные и синтетические масла и смазки. В современных механизмах для этой цели используется также напыление          покрытий (тонких плёнок) на детали. С миниатюризацией механизмов созданием микроэлектромеханических систем (МЭМС) и наноэлектро механических систем (НЭМС) величина трения по сравнению с действующими в механизме силами увеличивается и становится весьма значительной , и при этом не может быть уменьшена с помощью обычных смазок, что вызывает значительный теоретический и практический интерес инженеров и учёных к данной области

Рассмотрим пример уменьшения силы трения при фрикционных колебаниях и вибрационном сглаживании.

ФРИКЦИОННЫЕ АВТОКОЛЕБАНИЯ

Будем тянуть тело с помощью троса, в который врезана пружина динамометра, и притом потянем за хвостик с постоянной скоростью. Окажется, что само тело не двигается с той же скоростью, а перемещается толчками. И это легко качественно объяснимо с помощью представленной выше картины. Действительно, один конец пружины прикреплен к телу, а второй начинает удаляться. К телу приложена упругая сила пружины, пропорциональная ее растяжению. Вначале эта сила мала и меньше силы упругого сцепления контакта (трения покоя), так что тело стоит на месте, а точнее, испытывает только незаметное микро смещение. При дальнейшем вытягивании сила пружины преодолевает силу контакта, и тело начинает скользить по поверхности. Но сила сопротивления скольжению ниже статического трения, и возникает положительная разность сил, разгоняющая тело. Пружина начнет сжиматься, а создаваемая ею упругая сила – уменьшаться, тело тормозится, вновь прилипает к поверхности, и придется затратить еще время, чтобы вновь растянуть пружину для преодоления трения покоя.

Таким образом, движение тела оказывается колебательным, в котором периодически сменяются фазы прилипания и скольжения (по-английски это звучит короче – stick and slip). Такое движение принято называть фрикционными автоколебаниями: фрикционными потому, что они порождены трением (friction), а авто потому, что они не навязаны извне какой-либо внешней колеблющейся силой, а являются внутренним свойством системы.

14

Внешнее воздействие – движение конца троса не является колебательным, трос движется с постоянной скоростью. Конечно, через этот трос мы подпитываем тело энергией, поэтому-то колебания являются незатухающими, несмотря на потери энергии в контакте.

Фрикционные автоколебания – крайне неприятный эффект. Для многих машин требуется обеспечить плавное, без толчков, медленное движение. Сварочный робот должен плавно вести сварочный аппарат вдоль свариваемого шва: если он будет дергаться, то в одном месте будет перегрев и свариваемые пластины искорежатся, а в другом сварка не осуществится вовсе, аппарат его проскочит. А ведь робот – это механизм, в узлах которого обязательно возникает трение. Как же преодолевать эти неприятности?

Обрисованная картина указывает и на два главных пути уменьшения трения: улучшить качество обработки поверхностей, чтобы уменьшить пики, а тем самым силу страгивания,, или обеспечить, возможно, лучший доступ смазки и сохранность поверхностного слоя. Это самые важные пути, и они предназначены не только для борьбы за плавность хода, но прежде всего для борьбы с ненужными потерями энергии в скользящих контактах

ВИБРАЦИОННОЕ СГЛАЖИВАНИЕ

Начнем с самого простого эксперимента, который можно осуществить, не отходя от стола. Положите какой-нибудь предмет, например тяжелый учебник, на лист бумаги и попытайтесь затем вытянуть этот лист из-под книги. Если вы медленно потянете за лист, книга поползет вместе с ним. Но попытайтесь тянуть не равномерно, а толчками. Скорость движения вытягиваемого листа будет переменной, и, хотя в среднем она может быть прежней или даже меньшей, вы обнаружите, что книга почти останется на месте, а лист из-под нее вытянется. Из-за чего книга не отцеплялась от листа? Конечно, из-за наличия сухого трения, большой силы трения покоя. Из-за чего же это сцепление уменьшилось? Только из-за того, что переменная скорость позволила преодолеть барьер трения покоя и привести тела во взаимное движение.

Рассмотрим еще один пример. Пусть на основное движение вытягиваемого конца троса наложены быстрые колебания (на техническом языке – высокочастотные вибрации). Соответственно и сила, приложенная к телу, будет быстро колебаться, вибрировать. Экспериментатор может обнаружить   замечательный эффект: неприятное движение толчками

15

исчезнет, прилипание отсутствует, тело будет двигаться плавно, лишь слегка вздрагивая под действием колебаний силы, причем эти колебания могут быть почти незаметны для глаза.

Измерения показывают, что средний уровень силы, регистрируемой динамометром, плавно растет с ростом средней скорости вытягивания троса вплоть до уровня трения скольжения.

Главный вывод очень прост, хотя и удивителен: при не слишком больших, средних скоростях средняя сила сопротивления ведет себя не как сухое трение, а как вязкое, жидкое, пропорциональное скорости, а при росте амплитуды эта «средняя» вязкость падает. Такой эффект принято называть вибрационным сглаживанием или ожижением сухого трения под действием высокочастотных вибраций. Он с успехом используется в технике, в особенности в системах управления, использующих механические устройства. В частности, он позволяет сделать движение робота более – плавным, а робот – более послушным даже малым сигналам.

Но на самом деле эффект вибрационного сглаживания может проявляться и совсем нежелательным образом, о чем гласит такая печальная история. К северу от Петербурга находится самое большое в Европе Ладожское озеро. Те, кто бывал на нем, хорошо знакомы с его коварным характером. Оно может быть обманчиво тихим, с «зеркальной гладью вод», но внезапно откуда-то из-за скал подует ветер, и через часок разгуляются волны, и притом крутые и частые. Маленькая байдарка прыгает на них как поплавок, а вот о борт большого корабля волны разбиваются с грохотом, заставляя его корпус дребезжать, то есть испытывать высокочастотную вибрацию. Чтобы избежать коварства Ладоги, еще при Петре I построили обводной канал, чтобы доставлять грузы в Питер по тихой воде. В питерских холодных и мокрых краях хлеб, как известно, растет плохо, и от века пшеницу везли к нам с благодатного юга. Уже в наши времена соединили Волгу с Ладогой и Невой большими каналами и пустили по ним большие корабли для перевозки зерна. Зерно насыпалось в огромные трюмы и ехало в них к месту назначения. Однако в начале работы таких больших судов произошло несколько катастроф: пересекая Ладогу в бурные осенние дни, некоторые корабли вдруг начинали сильно раскачиваться с борта на борт, а затем опрокидывались. В чем же дело? Ведь теперь любой корабль еще при проектировании детально рассчитывается, чтобы он не мог потерять устойчивость. Выяснилось, однако, что

Информация о работе Сила трения. Способы уменьшения трения