Спектральный анализ

Автор: Пользователь скрыл имя, 23 Марта 2012 в 11:03, реферат

Описание работы

Спектр – это разложение света на составные части, лучи разных цветов.
Метод исследования химического состава различных веществ по их линейчатым спектрам испускания или поглощения называют спектральным анализом.

Содержание

1 Введение
2 Механизм излучения
3 Распределение энергии в спектре
4 Спектральные аппараты
5 Виды спектров
6 Виды спектральных анализов
7 Заключение
8. Список используемых источников

Работа содержит 1 файл

реферат2 спектр анализ .doc

— 81.00 Кб (Скачать)

При наблюдении пламени в спектроскоп  на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении  молекул поваренной соли в пламени. Каждый из них - это частокол  цветных линий различной яркости,  разделенных широкими темными  полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне  определенных длин волн (точнее, в определенных очень узких спектральных  интервалах). Каждая линия имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют  друг с другом. Это самый  фундаментальный, основной тип спектров.

Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками.  С помощью очень хорошего спектрального аппарата можно обнаружить,  что каждая полоса представляет  собой совокупность большого  числа очень тесно расположенных  линий. В отличие от линейчатых  спектров полосатые спектры  создаются не атомами, а молекулами,  не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения  линейчатых спектров, обычно используют свечение паров в пламени  или свечение газового разряда.

Спектры поглощения. Все вещества,  атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает  волны, соответствующие красному свету, и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые  и полосатые спектры излучения  и столько же видов спектров  поглощения.

 

6. Виды спектральных анализов

 

Главное свойство линейчатых спектров состоит в том, что длины волн (или частоты) линейчатого спектра какого-либо вещества зависят  только от свойств атомов этого вещества, но совершенно не зависят от способа возбуждения свечения атомов. Атомы любого химического  элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго-определенный набор длин волн.

На этом основан спектральный анализ - метод определения химического  состава вещества по его спектру. Подобно отпечаткам пальцев  у людей линейчатые спектры имеют неповторимую индивидуальность.  Неповторимость узоров на коже пальца помогает часто найти преступника. Точно так же благодаря  индивидуальности спектров имеется возможность определить химический состав тела. С помощью спектрального анализа можно обнаружить  данный элемент в составе сложного вещества. Это очень чувствительный метод.

На данное время известны следующие виды спектральных анализов - атомный спектральный анализ (АСА)( определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения), эмиссионный АСА(по спектрам испускания атомов, ионов и молекул, возбуждённым различными источниками электромагнитного излучения в диапазоне от g-излучения до микроволнового), атомно-абсорбционный СА(осуществляют по спектрам поглощения электромагнитного излучения анализируемыми объектами (атомами, молекулами, ионами вещества, находящегося в различных агрегатных состояниях)), атомно-флуоресцентный СА, молекулярный спектральный анализ (МСА) (молекулярный состав веществ по молекулярным спектрам поглощения, люминесценции и комбинационного рассеяния света.), качественный МСА(достаточно установить наличие или отсутствие аналитических линий определяемых элементов. По яркости линий при визуальном просмотре можно дать грубую оценку содержания тех или иных элементов в пробе), количественный МСА(осуществляют сравнением интенсивностей двух спектральных линий в спектре пробы, одна из которых принадлежит определяемому элементу, а другая (линия сравнения) - основному элементу пробы, концентрация которого известна, или специально вводимому в известной концентрации элементу).

Самым точным из перечисленных анализов является атомно-абсорбционный СА. Методика проведения ААА по сравнению с др. методами значительно проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах. ААА с успехом заменяет трудоёмкие и длительные химические методы анализа, не уступая им в точности.

В настоящее время определены спектры всех атомов и составлены таблицы спектров. С помощью спект­рального анализа были открыты многие новые элементы: рубидий, цезий и др. Элементам часто давали названия в соответствии с цветом наиболее интенсивных линий спект­ра. Рубидий дает темно-красные, рубиновые линии. Слово цезий оз­начает «небесно-голубой». Это цвет основных линий спектра цезия.

Именно с помощью спектраль­ного анализа узнали химический состав Солнца и звезд. Другие методы анализа здесь вообще не­возможны. Оказалось, что звезды состоят из тех же самых хими­ческих элементов, которые имеются и на Земле. Любопытно, что гелий первоначально открыли на Солнце, и лишь затем нашли в атмосфере Земли. Название этого

элемента напоминает об истории его откры­тия: слово гелий означает в пере­воде «солнечный».

7. Заключение

Благодаря сравнительной просто­те и универсальности спектраль­ный анализ является основным ме­тодом контроля состава вещества в металлургии, машиностроении, атом­ной индустрии. С помощью спект­рального анализа определяют химический  состав руд и минералов.

Состав сложных, главным образом органических, смесей анализи­руется по их молекулярным спект­рам.

Спектральный анализ можно производить не только по спектрам испускания, но и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позво­ляют исследовать химический состав этих небесных тел. Ярко светя­щаяся поверхность Солнца - фо­тосфера - дает непрерывный спектр. Солнечная атмосфера поглощает из­бирательно свет от фотосферы, что приводит к появлению линий погло­щения на фоне непрерывного спект­ра фотосферы.

Но и сама атмосфера Солнца излучает свет. Во время солнечных затмений, когда солнечный диск закрыт Луной, происходит обраще­ние линий спектра. На месте ли­ний поглощения в солнечном спект­ре вспыхивают линии излучения.

В астрофизике под спектраль­ным анализом понимают не только определение химического состава звезд, газовых облаков и т. д., но и нахождение по спектрам многих

других физических характеристик этих объектов: температуры, давле­ния, скорости движения, магнитной индукции.

Важно знать, из чего состоят окружающие нас тела. Изобрете­но много способов определения их состава. Но состав звезд и галактик можно узнать только с помощью спектрального анализа.

Экспрессные методы АСА широко применяются в промышленности, сельском хозяйстве, геологии и мног их др. областях народного хозяйства и науки. Значительную роль АСА играет в атомной технике, производстве чистых полупроводниковых материалов, сверхпроводников и т. д. Методами АСА выполняется более 3/4 всех анализов в металлургии. С помощью квантометров проводят оперативный (в течение 2-3 мин) контроль в ходе плавки в мартеновском и конвертерном производствах.

Итак, спектральный анализ применяется почти во всех важнейших сферах человеческой деятельности. Таким образом, спектральный анализ является одним из важнейших аспектов развития не только научного прогресса, но и самого уровня жизни человека.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Список используемых источников:

 

1. Заидель А. Н., Основы спектрального анализа, 1965

2. Чулановский В. М., Введение в молекулярный спектральный анализ, М. - Л., 1951;

3. Раевская Н.В.. Концепции современного естествознания. М.: Логос, 2001г.

4. Воронов В.К., Гречнева М.В., Сагдеев Р.З. Основы соверменого естествозанния., М., ВШ, 1999.

 

 

 

2

 



Информация о работе Спектральный анализ