Асинхронные двигатели

Автор: d*************@mail.ru, 26 Ноября 2011 в 01:27, доклад

Описание работы

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту.

Электрические машины преобразуют механическую энергию в электрическую, и наоборот. Машина, преобразующая механическую энергию в электрическую, называются генератором. Преобразование электрической энергии в механическую осуществляется двигателями.

Работа содержит 1 файл

АД.docx

— 47.34 Кб (Скачать)

План

Введение 

Устройство асинхронного электродвигателя

Принцип действия асинхронного электродвигателя

Схема пуска асинхронного электродвигателя

Регулирование частоты  вращения асинхронного электродвигателя

Межремонтное обслуживание асинхронного электродвигателя

Не исправности  электродвигателя

Не исправности  электродвигателя и возможные причины  их возникновения 

Виды и объем  ремонта 

Монтаж электродвигателя

Техника безопасности

Литература 

Введение

Электрические машины широко применяют на электрических  станциях, в промышленности, на транспорте, в авиации, в системах автоматического  регулирования и управления, в  быту.

Электрические машины преобразуют механическую энергию  в электрическую, и наоборот. Машина, преобразующая механическую энергию в электрическую, называются генератором. Преобразование электрической энергии в механическую осуществляется двигателями.

Любая электрическая  машина может быть использована как  в качестве генератора, так и в  качестве электродвигателя. Это свойство электрической машины изменять направление  преобразуемой ею энергии называется обратимостью машины. Электрическая  машина может быть также использована для преобразования электрической  энергии одного рода тока ( частоты, числа фаз переменного тока, напряжения постоянного тока ) в энергию другого рода тока. Такие электрические машины называются преобразователями.

В зависимости от рода тока электроустановки, в которой  должна работать электрическая машина, они делятся на машины постоянного  и переменного тока.

Машины переменного  тока могут быть как однофазными, так и много фазными. Наиболее широкое применение нашли трехфазные синхронные и асинхронные машины, а также катекторные машины переменного тока, которые допускают экономичное регулирование частоты вращения в широких пределах

В настоящее время  асинхронные двигатели являются наиболее распространенными электрическими машинами. Они потребляют около 50% электроэнергии, вырабатываемой электростанциями страны. Такое широкое распространение  асинхронные электродвигатели получили из-за своей конструктивной простоты, низкой стоимости, высокой эксплуатационной надежности. Они имеют относительно высокий КПД: при мощностях более 1кВт кпд=0,7:0,95 и только в микродвигателях  он снижается до 0,2-0,65.

Наряду с большими достоинствами асинхронные двигатели  имеют и некоторые недостатки: потребление из сети реактивного  тока, необходимого для создания магнитного потока, в результате чего асинхронные двигатели работают с соs =1. Кроме того, по возможностям регулировать частоту вращения они уступают двигателям постоянного тока.

Появление трехфазных асинхронных двигателей связано  с именем М.О.Доливо-Добровольского. Эти двигатели были изобретены им в 1889г.

Принцип действия асинхронных  двигателей

Наиболее распространенные среди электрических двигателей получил трехфазный асинхронный  двигатель, впервые сконструированный  известным русским электриком М.О.Доливо-Добровольским.

Асинхронный двигатель  отличается простотой конструкции  и несложностью обслуживания. Как  и любая машина переменного тока, асинхронный двигатель состоит  из двух основных частей - ротора и статора. Статором называется неподвижная часть  машины, ротором - ее вращающаяся часть. Асинхронная машина обладает свойством  обратимости, то есть может быть использована как в режиме генератора, так и  в режиме двигателя. Из-за ряда существенных недостатков асинхронные генераторы практически не применяются, тогда, как асинхронные двигатели получили очень широкое распространение.

Много фазная обмотка переменного тока создает вращающееся магнитное поле, частота вращения которого в минуту рассчитывается по формуле:

n1=60f1/p, [1, стр. 134]

где: n- частота вращения магнитного поля статора;

f - частота тока в сети;

р - число пар полюсов.

Если ротор вращается  с частотой, равной частоте вращения магнитного поля статора, то такая частота  называется синхронной.

Если ротор вращается  с частотой, не равной частоте магнитного поля статора, то такая частота называется асинхронной.

В асинхронном двигателе  рабочий процесс может протекать  только при асинхронной частоте, то есть при частоте вращения ротора, не равной частоте вращения магнитного поля.

Номинальная частота  вращения асинхронного двигателя зависит  от частоты вращения магнитного поля статора и не может быть выбрана  произвольно. При стандартной частоте  промышленного тока f1=50Гц возможные  синхронные частоты вращения (частоты  вращения магнитного поля)

n1=60f1/p=3000/p

Работа асинхронного электродвигателя основана на явлении, названном “диск Араго - Ленца”

Это явление заключается  в следующем: если перед полосами постоянного магнита поместить  медный диск, свободно сидящий на оси, и начать вращать магнит вокруг его  оси при помощи рукоятки, то медный диск будет вращаться в том  же направлении. Это объясняется  тем, что при вращении магнита  его магнитное поле пронизывает  диск и индуктирует в нем вихревые токи. В результате взаимодействия вихревых токов с магнитным полем  магнита, возникает сила, приводящая диск во вращение. На основании закона Ленца направление всякого индуктивного тока таково, что он противодействует причине, его вызвавшей. Поэтому  вихревые токи в теле диска стремятся  задержать вращение магнита, но, не имея возможности сделать это, приводят диск во вращение так, что он следует  за магнитом. При этом частота вращения диска всегда меньше, чем частота  вращения магнита. Если бы эти частицы  почему-либо стали одинаковыми, то магнитное поле не перемещалось бы относительно диска, и, следовательно, в нем не возникали бы вихревые токи, то есть не было бы силы, под действием которой диск вращается.

В асинхронных двигателях постоянный магнит заменен вращающимся  магнитным полем, создаваемым трехфазной обмоткой статора при включении  ее в сеть переменного тока.

Вращающееся магнитное  поле статора пересекает проводники обмотки ротора и индуктирует  в них ЭДС, то есть электродвижущую силу. Если обмотка ротора замкнута на какое-либо сопротивление или накоротко, то по ней под действием индуктируемой электродвижущей силы проходит ток.

В результате взаимодействия тока в обмотке ротора с вращающемся  магнитным полем обмотки статора  создается вращающейся момент, под  действием которого ротор начинает вращаться по направлению вращения магнитного поля.

Если предположить, что в какой-то момент времени  частота вращения ротора оказалась  равной частоте вращения поля статора, то проводники обмотки ротора не будут  пересекать магнитное поле статора  и тока в роторе не будет. В этом случае вращающийся момент станет равным нулю и частота вращения ротора уменьшится по сравнению с частотой вращения поля статора, пока не возникнет вращающейся момент, уравновешивающий тормозной момент, который складывается из момента нагрузки на валу и момента сил трения в машине.

Асинхронная машина кроме  двигательного режима может работать в генераторном режиме и режиме электромагнитного  тормоза.

Генераторный режим  возникает в том случае, когда  ротор с помощью постоянного  двигателя вращается в направлении  вращения магнитного поля с частотой вращения, большей частоты вращения магнитного поля. Поэтому работе асинхронной  машины в генераторном режиме соответствуют  скольжения в пределах от 0 до- .Если ротор под действием посторонних сил начнет вращаться в сторону, противоположную направлению вращения магнитного поля, то возникает режим электромагнитного тормоза.

Режим электромагнитного  тормоза начинается при n=0 и может  продолжаться теоретически до n= , поэтому скольжение находиться в пределах от 1 до + .

Для изменения направления  вращения ротора, то есть для реверсирования двигателя, необходимо изменить направление  вращения магнитного поля, созданного обмотками статора. Это достигается  изменением чередования фаз обмоток  статора, для чего следует поменять местами по отношению к зажимам  сети любые два из трех проводов, соединяющих обмотку статора  с сетью.

Вне зависимости от направления вращения ротора его  частота n всегда меньше частоты вращения магнитного поля статора.

Устройство  асинхронных электродвигателей

Асинхронные электродвигатели состоят из двух частей : неподвижной - статора и вращающейся - ротора.

Сердечник статора, представляющий собой полый цилиндр, набирают из отдельных листов электротехнической стали толщиной 0,5-0,35мм. Для сердечников  асинхронных двигателей применяются  холоднокатаные изотронные электротехнические стали марок 2013,02312,02411 и другие. Листы или пластины штампуют с впадинами (пазами), изолируют лаком или окалиной для уменьшения потерь на вихревые потоки, собирают в отдельные пакеты и крепят в станине двигателя.

К станине прикрепляют  также боковые щиты с помещенными  на них подшипниками, на которые  опирается вал ротора. Станину  устанавливают на фундамент.

В продольные пазы статора  укладывают проводники его обмотки, которые соединяют между собой  так, что образуется трех фазная система. На щитке машины имеется шесть  зажимов, к которым присоединяются начала и концы обмоток каждой фазы. Для подключения обмоток  статора к трехфазной сети они  могут быть соединены звездой  или треугольником, что дает возможность  включать двигатель в сеть с двумя  разными линейными напряжениями.

Например, двигатель  может работать от сети с напряжением 220 и 127в. На щитах машины указаны  оба напряжения сети, на которые  рассчитан двигатель, то есть 220/127в  или 380/220в.

Для более низких напряжений, указанных на щитке, обмотка статора  соединяется треугольником, для  более высоких - звездой.

При соединении обмотки  статора треугольником на щитке  машины верхние зажимы объединяют перемычками  с нижними, а каждую пару соединенную  вместе зажимов подключают к линейным проводам трехфазной сети. Для включения звездой три нижних зажима на щитке соединяют перемычками в общую точку, а верхние подключают к линейным проводам трехфазной сети.

Роторы асинхронных  электродвигателей выполняют двух видов: с короткозамкнутой и фазной обмотками. Первый вид двигателей называют асинхронными двигателями с короткозамкнутым ротором, а второй - асинхронными двигателями  с фазным ротором или асинхронными двигателями с контактными кольцами. Наибольшее распространение имеют  двигатели с короткозамкнутым ротором.

Сердечник ротора также  набирают из стальных пластин толщиной 0,5мм, изолированных лаком или  окалиной для уменьшения потерь на вихревые токи.

Пластины штампуют с впадинами и собирают в пакеты, которые крепят на валу машины. Из пакетов  образуются цилиндры с продольными  пазами, в которых укладывают проводники обмотки ротора. В зависимости  от типа обмотки асинхронные машины могут быть с фазным и короткозамкнутым ротором. Короткозамкнутая обмотка  ротора выполняется по типу беличьего  колеса. В пазах ротора укладывают массивные стержни, соединенные  на торцевых сторонах медными кольцами. Часто короткозамкнутую обмотку  ротора изготовляют из алюминия. Алюминий в горячем состоянии заливают в пазы ротора под давлением. Такая  обмотка всегда замкнута накоротко  и включение сопротивления в  нее не возможно. Фазная обмотка  ротора выполнена подобно статорной, то есть проводники соответствующим  образом соединены между собой, образуя трехфазную систему. Обмотки  трех фаз соединены звездой. Начала этих обмоток подключены к трем контактным медным кольцам, укрепленным на валу ротора. Кольца изолированы друг от друга и от вала и вращаются  вместе с ротором. При вращении колец  поверхности их скользят по угольным или медным щеткам, неподвижно укрепленным  над кольцами. Обмотка ротора может  быть замкнута на какое-либо сопротивление  или накоротко при помощи указанных  выше щеток.

Двигатели с короткозамкнутым ротором проще и надежнее в  эксплуатации, значительно дешевле, чем двигатели с фазным ротором. Однако двигатели с фазным ротором  обладают лучшими пусковыми и  регулировочными свойствами.

В настоящее время  асинхронные двигатели выполняют  преимущественно с короткозамкнутым ротором и лишь при больших  мощностях и специальных случаях  используют фазную обмотку ротора.

Асинхронные двигатели  производят мощностью от нескольких десятков ватт до 15000кВт при напряжениях  обмотки статора до 6кВ.

Между статором и ротором  имеется воздушный зазор, величина которого оказывает существенное влияние  на рабочие свойства двигателя.

Информация о работе Асинхронные двигатели