Обзор структурных схем ИВЭП

Автор: Пользователь скрыл имя, 20 Декабря 2010 в 17:06, реферат

Описание работы

1 Виды импульсных источников электропитания
2 Структурная схема ИВЭП с активным корректором мощности (ККМ)
3 Элементная база для ИВЭП
4 Структурная схема управления преобразователя

Работа содержит 1 файл

ОБЗОР СТРУКТУРНЫХ СХЕМ ИВЭП.doc

— 377.50 Кб (Скачать)

     Появление полевых транзисторов позволило  избежать многих недостатков, присущих биполярным транзисторам. Существуют два типа полевых транзисторов: с управляющим p-n переходом и с изолированным затвором (МДП-транзисторы). Важным преимуществом полевых транзисторов является малое время задержки при включении, благодаря чему обеспечивается относительно высокая скорость переключения. 

     На  рисунке 2.11 показана ОБР (пунктирной линией) мощного полевого транзистора. Для  сравнения, максимальный коллекторный ток IKmax и граничное напряжение для  биполярного и полевого транзисторов взяты одинаковыми. Как видно, у полевых транзисторов нет области, ограниченной вторичным пробоем. 

     Особый  интерес представляют полевые транзисторы  со статической индукцией и управляемым p-n переходом, называемые статическими индукционными транзисторами (СИТ). В этих транзисторах затвор отделен от канала диэлектрической пленкой, и поэтому во входной цепи транзистора тока нет. Кроме того, такое отделение затвора от канала позволяет выполнить канал в двух вариантах: в виде встроенного (конструктивного) или в виде индуцированного (наведенного при протекании тока) канала p-типа или n-типа. За рубежом эти транзисторы носят название MOSFET- или FET-Transistor (Metal-Оxide-Semiconductor-Field-Effect Transistor), что соответствует обозначению МОП (МДП) – транзистор (металл-окисел-полупроводник), где металл обозначает электрод затвора, окисел - диэлектрик, отделяющий затвор от полупроводникового канала сток - исток.  

     Достоинство полевых транзисторов – отсутствие затрат мощности на управление и высокое  быстродействие в результате переноса тока в них носителями одного знака (основными носителями), в отличие от биполярных транзисторов, где ток в средней части прибора (базе) переносится неосновными носителями. По предельным значениям выходного тока полевые транзисторы уступают биполярным, что определяет их использование в высоковольтных устройствах силовой электроники с высокими частотами преобразования электрической энергии. 

     В последние годы появился прибор, конструктивно  объединяющий полевой транзистор с  изолированным затвором (на входе) и биполярный транзистор (на выходе), названный биполярным транзистором с изолированным затвором (БТИЗ) или транзистором IGBT (Isolated Gate Bipolar Transistor). Он имеет высокое входное сопротивление и не требует в статике мощности на управление, как полевой транзистор. Электрические параметры у него выше, чем у биполярного транзистора и у полевого. В настоящее время за рубежом выпускают IGBT-транзисторы четвертого поколения с выходными токами до 1200А и напряжением до 6500В. Высокая перегрузочная способность и быстродействие позволили с успехом использовать их в качестве высоковольтных ключей. 

     Немалый интерес представляют транзисторы  по схеме Дарлингтона. По своим свойствам  они занимают среднее положение  между обычным, биполярным и полевым  транзисторами. Это сдвоенный эмиттерный повторитель из биполярных транзисторов, который обеспечивает не только высокое входное сопротивление, но большой коэффициент передачи, характерный для мощного полевого транзистора. Выбрав подходящий биполярный транзистор, можно получить коэффициент передачи по току несколько тысяч и входное сопротивление, измеряемое тысячами ом. В приложении А приведены параметры некоторых типов силовых транзисторов.  

     Основную  долю общих потерь мощности в сильноточных ИВЭП составляют потери в выпрямительных диодах. Силовые диоды в зависимости от функционального назначения можно разделить на высоковольтные и низковольтные. Первые используются в высоковольтных цепях в качестве выпрямителей, в цепях рекуперации энергии и в цепях формирования фронтов при переключении транзисторов. В связи с этим к ним предъявляются такие же требования по быстродействию, допустимому обратному напряжению и максимальному прямому току, что и к соответствующим параметрам мощных транзисторов. 

     Ограниченное  время восстановления обратного сопротивления диодов является причиной “сквозных” токов, приводящих к увеличению потерь мощности и появлению высокочастотных помех в ИВЭП. В качестве низковольтных выпрямителей используются кремниевые высокочастотные диоды с p-n переходом и временем восстановления менее 1 мкс при токах 5…30 А. Однако, большое прямое падение напряжения (около 1 В), сравнительно малое быстродействие, отсутствие практической возможности параллельного соединения диодов не позволяют получить хорошие показатели выпрямителей. 

     Всё большее распространение получают диоды с барьером Шоттки у которых  прямое падение напряжения составляет 0,55…0,9 В и временем восстановления обратного сопротивления (50…20) нс. Недостатком  этих диодов являются довольно низкое допустимое обратное напряжение (30…50) В и большой обратный ток. 

     В последние годы широкое применение нашли эпитаксиальные диоды. По времени  восстановления обратного сопротивления  эпитаксиальные диоды не уступают лучшим образцам диодов с барьером Шоттки, но допускают более высокое обратное напряжение и имеют существенно меньший обратный ток. При этом, по падению напряжения в прямом направлении они занимают промежуточное место между обычным кремниевыми диодами и диодами с барьером Шоттки. 

     Иногда, в качестве выпрямительных диодов применяются полевые транзисторы с малыми потерям, обеспечивающие высокий КПД – так называемые синхронные выпрямители. 

     Повышение стабильности и снижение пульсации  выходного напряжения ИВЭП при значительных статических и импульсных напряжениях и токе нагрузки, обеспечение заданной помехоустойчивости и надежности во многом определяется выбором и эффективностью использования энергоемких конденсаторов. 

     Конденсаторы  входного фильтра ИВЭП с бестрансформаторным  входом должны обладать большими допустимыми значениями пульсации тока, высокой удельной емкостью и повышенной рабочей температурой. Наибольшее распространение для этих целей получили алюминиевые высоковольтные электролитические конденсаторы. Они составляют существенную долю общего объема ИВЭП. С точки зрения повышения удельных показателей основными требованиями, предъявляемыми к этим конденсаторам, должны быть высокая удельная емкость, малые допустимые значения последовательного активного сопротивления, собственной индуктивности и большие допустимые пульсации тока. 

     В цепях коррекции траектории переключения транзистора, а также в резонансных  ИВЭП используются высоковольтные высокочастотные  конденсаторы. 

     Основными требованиями, предъявляемыми к высоковольтным высокочастотным конденсаторам, являются: работа на повышенных частотах, большие значения переменных составляющих напряжения, высокая удельная емкость и повышенная температура окружающей среды. 

     Одним из энергоемких компонентов, используемых в ИВЭП, являются сердечники магнитопроводов  трансформаторов и дросселей. Основными требованиями, предъявляемыми к сердечникам магнитопроводов для импульсных ИВЭП, являются: работа на повышенных частотах, высокая удельная мощность, работа при повышенной температуре окружающей среды, малые потери и высокая индукция. 

     На  качество трансформаторов влияют форма  и размер сердечника. В ИВЭП широкое  применение нашли ферритовые сердечники, обладающие высоким удельным сопротивлением и имеющие низкие потери. Технология изготовления ферритов позволяет получить сердечники любой конфигурации, обеспечивающей требуемые качества. В средних и особенно сильных полях применяются марганцево-цинковые ферриты. Они обладают низкими потерями, высокой стабильностью к воздействию механических нагрузок. Применение в трансформаторах этих ферритов позволяет увеличить рабочую частоту, вследствие чего повышаются удельные показатели трансформаторов. На рисунке 2.12 и 2.13 представлены основные зависимости, характеризующие свойства марганцево- цинковых ферритов при различных температурах, частоте  

       

     а)                        б)         

     Рисунок 2.12 – Зависимости - а) удельных потерь от индукции для ферритов марок 2000НМ (А,В) и 2500НМС1 (С,Д); б) магнитной индукции ферритов марок 2500НМС (А) и 2000НМ (В) от температуры  и индукции. 

     

     а)                       б)          

     Рисунок 2.13 – а) Температурная зависимость  объемных потерь ферритов марок 2000НМ (А), 2500НМС1 (В) и 2500НМС2 (С); б ) Зависимость  магнитной проницаемости от индукции для ферритов марок 2000НМ (1,2) и 2500НМС1 (3,4) при температуре (25± 10) и (100± 3)° С 
 

     Применение  в ИВЭП ферритов с индексом НМ позволяет  уменьшить массу и габариты трансформатора на 8…15 %, а при сохранении прежних  типоразмеров – увеличить мощность почти на 20 %. Хорошо себя зарекомендовали  сердечники из магнитодиэлектриков - аморфных материалов. Они имеют малые потери, большую индукцию и более технологичны. Например, трансформаторы фирмы “Vacuumchmelze GmbH” с частотой преобразования 100 кГц имеют габариты в 2…3 раза меньше, чем трансформаторы с ферритовыми сердечниками. 

     Современные импульсные ИВЭП имеют сложную структуру. Особо надо отметить управляющую  часть, которая выполняет функции  управления силовыми приборами, контроля, защиты, диагностики и сигнализации. Существуют микросхемы, выполняющие  как частично, так и полностью указанные функции, применение которых способствует миниатюризации ИВЭП. 

     4 Структурная схема управления  преобразователя 

     Управляющее устройство (УУ) предназначено для  формирования импульсов включения  силовых транзисторных ключей. В настоящее время ключевые элементы преобразователя выполняются на биполярных и МОП транзисторах с изолированным затвором. Это обусловлено высокой скоростью их переключения, устойчивостью к скорости нарастания напряжения на закрытом приборе, способностью к пиковым перегрузкам по току и широкой области безопасной работы ключа. Для эффективного управления силовыми транзисторами разработаны семейства интегральных драйверов. Это специализированные микросхемы, например TL493/4/5, 1133ЕУ; 1114ЕУ; 1156ЕУ и т.д. Общим для данных микросхем является использование широтно-импульсной модуляции для регулирования выходного напряжения. При подключении микросхемы необходимо организовать контур обратной связи по напряжению (или току) для его стабилизации.  

     На  рисунках 2.14 показаны упрощенные функциональные схемы управления для одно- и двухтактных преобразователей. Схемы содержат: генератор пилообразного напряжения G, усилитель сигнала ошибки (У), источник опорного напряжения (ИОН), компаратор (ШИМ), делитель напряжения обратной связи (R1, R2). 

     Если  на вход делителя подать выходное напряжение U0, то часть его 

     Uос =U0 R2/(R1+R2) воздействует на прямой  вход ОУ. Выходной сигнал ОУ  определяется разностью напряжений Uос и Uион и коэффициентом  усиления ОУ 

     Uу  = UОС Ку = (U0 R2/(R1+R2) - Uион) Ку. 

     Так как на входе компаратора (ШИМ) действуют  два сигнала, то на интервале превышения пилообразного над напряжением U на выходе компаратора образуются импульсы прямоугольной формы, длительность которых зависит от величины UОС. 
 

      Рисунок 2.14 – Функциональная схема устройства управления 

     а) однотактным преобразователем; б) двухтактным  преобразователем 

     Особенностью  двухтактных схем управления является необходимость разделения последовательности импульсов с выхода компаратора  на две, для поочередного управления ключами преобразователя. Для этой цели тактовые импульсы поступают на логическое устройство (L), осуществляющее распределение импульсов по силовым ключам. 

     Для расширения функциональных возможностей схемы могут содержать ряд  дополнительных элементов. К ним относятся пороговые элементы для защиты по току и от превышения (понижения) напряжения и т.д. (блок защиты). 

     Элементы  схемы, объединенные штрих пунктиром  выполняются в одном корпусе  специализированной микросхемы.  

     5 Драйверы полевых транзисторов 

     Драйверы MOSFET- и IGBT-транзисторов - устройства для  управления мощными полупроводниковыми приборами в выходных каскадах преобразователей электрической энергии. Они используются в качестве промежуточного звена  между управляющей схемой (контроллером или цифровым сигнальным процессором) и мощными исполнительными элементами.  

     Этапы развития энергетической (силовой) электроники  определяются достижениями в технологиях  силовых ключей и их схем управления. Доминирующим направлением в энергетической электронике является повышение рабочих частот конверторов, входящих в состав импульсных источников питания. Преобразование электроэнергии на более высоких частотах позволяет улучшить удельные массогабаритные характеристики импульсных трансформаторов, конденсаторов и дросселей фильтров. Динамические и статические параметры силовых приборов постоянно улучшаются, но мощными ключами надо еще и эффективно управлять. Для сбалансированного взаимодействия между управляющей схемой и выходными каскадами и предназначены мощные высокоскоростные драйверы MOSFET- и IGBT-транзисторов. Драйверы имеют высокие выходные токи (до 9 А), малые длительности фронта, спада, задержки и другие интересные отличительные особенности. Классификация драйверов приведена на рисунке 2.15.  

Информация о работе Обзор структурных схем ИВЭП