Устройство, принцип работы плазменной (PDP) панели

Автор: Пользователь скрыл имя, 18 Апреля 2013 в 01:05, реферат

Описание работы

Газоразрядный экран (также широко применяется английская калька «плазменная панель») — устройство отображения информации, монитор, основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря в плазме.
Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Работа содержит 1 файл

Устройство, принцип работы плазменной (PDP) панели..docx

— 40.19 Кб (Скачать)


Изм.

Лист

№ докум.

Подпись

Дата

Лист

 

КР09.210308.004ПЗ


Устройство плазменной панели

Газоразрядный экран (также широко применяется  английская калька «плазменная панель») — устройство отображения информации, монитор, основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом  разряде в ионизированном газе, иначе  говоря в плазме.

 

Плазменная  панель представляет собой матрицу  газонаполненных ячеек, заключенных  между двумя параллельными стеклянными  пластинами, внутри которых расположены  прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между  разрядными электродами (сканирования и подсветки) на лицевой стороне  экрана и электродом адресации на задней стороне.

 

Особенности конструкции:

  • суб-пиксель плазменной панели обладает следующими размерами 200 мкм x 200 мкм x 100 мкм;
  • передний электрод изготовляется из оксида индия и олова, поскольку он проводит ток и максимально прозрачен.
  • при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома, несмотря на его непрозрачность;
  • для создания плазмы ячейки обычно заполняются газом - неоном или ксеноном (реже используется гелий и/или аргон, или, чаще, их смеси).

Химический состав люминофора:

  • Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+;+ / YBO3:Tb / (Y, Gd) BO3:Eu [1]
  • Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3+
  • Синий: BaMgAl10O17:Eu2+

Существующая  проблема в адресации миллионов  пикселей решается расположением пары передних дорожек в виде строк (шины сканирования и подсветки), а каждой задней дорожки в виде столбцов (шина адресации). Внутренняя электроника  плазменных экранов автоматически  выбирает нужные пиксели. Эта операция проходит быстрее, чем сканирование лучом на ЭЛТ-мониторах. В последних  моделях PDP обновление экрана происходит на частотах 400—600 Гц, что не позволяет  человеческому глазу замечать мерцания экрана.

Принцип действия

Работа плазменной панели состоит из трех этапов:

  1. инициализация, в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионовой газовой среды, на второй ступени разряд в газе, а на третьей — завершение упорядочивания.
  2. адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.
  3. подсветка, в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

Один цикл «инициализация — адресация — подсветка» образует формирование одного подполя изображения. Складывая несколько подполей можно обеспечивать изображение заданной яркости и контраста. В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование  плазмы. В плазме происходит емкостной  высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.


Информация о работе Устройство, принцип работы плазменной (PDP) панели