Функции нуклеиновых кислот

Автор: Пользователь скрыл имя, 20 Февраля 2012 в 18:42, реферат

Описание работы

В наше время трудно назвать область естествознания, которую не интересовала бы проблема структуры и функций нуклеиновых кислот. Несмотря на огромный прогресс, достигнутый в последние десятилетия при изучении химического состава и строения нуклеиновых кислот, много проблем предстоит еще решить для выяснения зависимости между структурой и биологической ролью нуклеиновых кислот.

Содержание

1. Введение……………………………………………………………………………..2
2. Функции нуклеиновых кислот……………………………………………………..3
3. Механизм наследования генетической информации…………………………….6
4. Рекомбинантные ДНК и генетически модифицированные продукты…………13
5. Список используемой литературы……………………………………………….19

Работа содержит 1 файл

реферат биохимия.doc

— 147.50 Кб (Скачать)


Содержание.

1.      Введение……………………………………………………………………………..2

2.      Функции нуклеиновых кислот……………………………………………………..3

3.      Механизм наследования генетической информации…………………………….6

4.      Рекомбинантные ДНК и генетически модифицированные продукты…………13

5.      Список используемой литературы……………………………………………….19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

 

         В наше время трудно назвать область естествознания, которую не интересовала бы проблема структуры и функций нуклеиновых кислот. Несмотря на огромный прогресс, достигнутый в последние десятилетия при изучении химического состава и строения нуклеиновых кислот, много проблем предстоит еще решить для выяснения зависимости между структурой и биологической ролью нуклеиновых кислот. Нет сомнения, что именно на этом пути научного поиска исследования нуклеиновых кислот будут сделаны открытия, имеющие огромное значение для биологии, медицины и всей науки о живом. Эпохальное открытие принципа комплементарности нуклеиновых кислот позволило проникнуть в тайны не только тонкой структуры этих биополимеров, но и механизмов синтеза и воспроизведения биологических макромолекул. Нуклеиновые кислоты выполняют ряд важных биологических функций, не свойственных другим полимерным веществам. В частности, они обеспечивают хранение и передачу наследственной информации и принимают непосредственное участие в механизмах реализации этой информации путем программирования синтеза всех клеточных белков. Структурные компоненты нуклеиновых кислот выполняют, кроме того, функции кофакторов (коэнзим А, уридин-дифосфатглюкоза), аллостерических эффекторов, входят в состав коферментов (никотинамидадениндинуклеотид, флавинадениндинуклеотид), принимая тем самым непосредственное участие в обмене веществ, а также в аккумулировании (накоплении), переносе и трасформации энергии. Они являются предшественниками вторичных посредников (мессенджеров) – циклических мононуклеотидов (цАМФ и цГМФ), выполняющих важную функцию в передаче внутриклеточных сигналов.

                              Функция нуклеиновых кислот.

         Одна из основных функций нуклеиновых кислот состоит в детерминации синтеза белков. Информация о структуре белков, закодированная в нуклеотидной последовательности ДНК, должна передаваться от одного поколения к другому, и поэтому необходимо ее безошибочное копирование, т.е. синтез точно такой же же молекулы ДНК (репликация).

         Трансляция нуклеиновых кислот в белки. Генетическая информация, закодированная в нуклеотидной последовательности ДНК, переводится не только на язык нуклеотидной последовательности РНК, но и на язык аминокислот – мономерных единиц белков.

         Белковая молекула – это цепочка из аминокислот. Каждая аминокислота содержит кислую карбоксильную группу –COOH и оснвную аминогруппу–NH2. Карбоксильная группа одной аминокислоты связывается с аминогруппой другой, образуя амидную связь, и этот процесс продолжается, пока не образуется цепь, содержащая до 1000 аминокислот .

         В белках присутствует 20 разных аминокислот, от последовательности которых зависят их природа и функции. Эта последовательность определяется нуклеотидной последовательностью соответствующего гена – участка ДНК, кодирующего данный белок. Однако сама ДНК не является матрицей при синтезе белка. Сначала она транскрибируется в ядре с образованием матричной РНК (мРНК), которая диффундирует в цитоплазму, и на ней как на матрице синтезируется белок. Процесс ускоряется благодаря тому, что на каждой молекуле мРНК может одновременно синтезироваться множество белковых молекул.

         Репликация нуклеиновых кислот осуществляется благодаря образованию водородных связей между комплементарными основаниями исходной и дочерней цепей. Аминокислоты не образуют водородных связей с основаниями, так что прямое копирование матрицы невозможно. Они взаимодействуют с матрицей опосредованно, через «адапторные» нуклеиновые кислоты – небольшие молекулы транспортных РНК (тРНК), состоящие примерно из 80 оснований и способные связываться с мРНК.

         Каждая тРНК содержит специфическую последовательность из трех оснований, антикодон, который комплементарен группе из трех оснований, кодону, в мРНК. Антикодоны взаимодействуют с кодонами по правилу комплементарности, примерно так же, как взаимодействуют две цепи ДНК. Таким образом, последовательность оснований в мРНК определяет порядок присоединения тРНК, несущих аминокислоты. Схематически перенос информации от ДНК к белку можно представить следующим образом:

 

 

         Последовательность оснований в ДНК задает порядок следования аминокислот в белке, поскольку каждая аминокислота присоединяется специфическим ферментом только к определенным тРНК, а те, в свою очередь, – только к определенным кодонам в мРНК. Комплексы тРНК-аминокислота связываются с матрицей по одному в каждый данный момент времени. Ниже перечислены основные этапы белкового синтеза.

         1. Ферменты, называемые аминоацил-тРНК-синтетазами, присоединяют аминокислоты к соответствующим тРНК. Таких ферментов 20, по одному для каждой аминокислоты.

         2. Молекула мРНК присоединяется своим первым кодоном к небольшой частице, называемой рибосомой. Рибосомы состоят из примерно равных количеств рРНК и белка. Структура и функция рибосом весьма сложны, но главная их задача – облегчение взаимодействия мРНК и тРНК и ускорение полимеризации аминокислот, связанных с разными тРНК.

         3. тРНК, нагруженная аминокислотой, связывается с соответствующим кодоном мРНК, которая, в свою очередь, контактирует с рибосомой. Образуется комплекс рибосома-мРНК-тРНК-аминокислота.

         4. мРНК, подобно ленте на конвейере, продвигается по рибосоме на один кодон вперед.

         5. Следующая тРНК, нагруженная аминокислотой, присоединяется ко второму кодону.

         6. Первая и вторая аминокислоты связываются между собой.

         7. Первая тРНК отсоединяется от комплекса, и теперь вторая тРНК несет две аминокислоты, связанные между собой.

         8. мРНК снова продвигается на один кодон вперед, и все события повторяются, а растущая аминокислотная цепь удлиняется на одну аминокислоту.                 Процесс продолжается, пока не будет достигнут последний, «стоп»-кодон и последняя тРНК не отделится от готовой белковой цепи. В бактериальных клетках цепь из 100–200 аминокислот собирается за несколько секунд. В животных клетках этот процесс занимает около минуты.

         Генетический код. Итак, каждая аминокислота в белке опосредованно детерминируется определенным кодоном (группой из 3 оснований) в мРНК и в конечном счете в ДНК. Поскольку в нуклеиновых кислотах имеется четыре вида оснований, число возможных кодонов составляет 4*4*4 = 64. Соответствие между кодонами и аминокислотами, которые они кодируют, называется генетическим или биологическим кодом. Это соответствие было установлено опытным путем: к разрушенным клеткам добавляли синтетические полинуклеотиды известного состава и смотрели, какие аминокислоты включаются в белки. Позднее появилась возможность прямо сравнить последовательности аминокислот в вирусных белках и оснований в вирусных нуклеиновых кислотах. Чрезвычайно интересно, что генетический код, за редкими исключениями, одинаков для всех организмов – от вирусов до человека. Одно из таких исключений составляют изменения в генетическом коде, используемом митохондриями. Митохондрии - это небольшие автономные субклеточные частицы (органеллы), присутствующие во всех клетках, кроме бактерий и зрелых эритроцитов. Предполагают, что когда-то митохондрии были самостоятельными организмами; проникнув в клетки, они со временем стали их неотъемлемой частью, но сохранили некоторое количество собственной ДНК и синтезируют несколько митохондриальных белков.   

 

                  Механизм наследования генетической информации.

         Репликация (от позднелат. replicatio - повторение) (редупликация), самовоспроизведение нуклеиновых кислот (обычно ДНК, у некоторых вирусов РНК), обеспечивающее точное копирование генетической информации и передачу ее от поколения к поколению. При репликации ДНК нуклеотидная последовательность копируется (целиком или частично) в виде комплементарной последовательности дезоксирибонуклеотидов.

         В процессе репликации двойная спираль ДНК, состоящая из двух комплементарных полинуклеотидных цепей, раскручивается на отдельные цепи и одновременно начинается синтез новых полинуклеотидных цепей; при этом исходные цепи ДНК играют роль матриц. Новая цепь, синтезирующаяся на каждой из исходных цепей, идентична другой исходной цепи. Когда процесс завершается, образуются две идентичные двойные спирали, каждая из которых состоит из одной старой (исходной) и одной новой цепи (рис. 1). Таким образом от одного поколения к другому передается только одна из двух цепей, составляющих исходную молекулу ДНК, - так называемый полуконсервативный механизм репликации.

         Репликация состоит из большого числа последовательных этапов, которые включают узнавание точки началу репликации, расплетание исходного дуплекса (спирали), удержание его цепей в изолированном друг от друга состоянии, инициацию синтеза на них новых дочерних цепей, их рост (элонгацию), закручивание цепей в спираль и терминацию (окончание) синтеза. Все эти этапы репликации, протекающие с высокой скоростью и исключительной точностью, обеспечивает комплекс, состоящий более чем из 20 ферментов и белков, - так называемая ДНК-репликазная система, или реплисома. Функциональная единица репликации-репликон, представляющий собой сегмент (участок) хромосомы или внехромосомной ДНК, ограниченный точкой начала, в которой инициируется репликация, и точкой окончания, в которой репликация останавливается. Скорость репликации контролируется на стадии инициации. Однажды начавшись, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован (удвоен). Частота инициации определяется взаимодействием специальных регуляторных белков с точкой начала репликации. Бактериальные хромосомы содержат один репликон: инициации в единственной точке начала репликации ведет к репликации всего генома. В каждом клеточном цикле репликация инициируется только один раз, плазмиды и вирусы, являющиеся автономными генетическими элементами, представляют собой отдельные репликоны, способные к многократной инициации в клетке-хозяине. Эукариотические хромосомы (хромосомы всех организмов, за исключением бактерий и сине-зеленых водорослей) содержат большое число репликонов, каждый из которых также однократно инициируется за один клеточный цикл.

Рис. 1. Схема полуконсервативного механизма репликации: А, Т, G и С-остатки пуриновых и пиримидиновых оснований (соответственно аденина, тимина, гуанина и цитозина); 1 -исходная цепь ДНК; 2-новая цепь ДНК.

         Начиная с точки инициации, репликация осуществляется в ограниченной зоне, перемещающейся вдоль исходной спирали ДНК. Эта активная зона репликации (так называема репликационная вилка) может двигаться в обоих направлениях. При однонаправленной репликации вдоль ДНК движется одна репликационная вилка. При двунаправленной репликации от точки инициации в противоположных направлениях расходятся две репликационные вилки; скорости их движения могут различаться. При репликации ДНК бактерии и млекопитающих скорость роста дочерней цепи составляет соответствено 500 и 50 нуклеотидов в 1 с; у растений эта величина не превышает 20 нуклеотидов в 1 с. Движение двух вилок в противоположных направлениях создает петлю, которая имеет вид "пузыря" или "глаза". Продолжающаяся репликация расширяет "глаз" до тех пор, пока он не включит в себя весь репликон.

         В ходе репликации рост цепи осуществляется благодаря взаимодействия дезоксирибонуклеозидтрифосфата с 3'-ОН концевым нуклеотидом уже построенной части ДНК; при этом отщепляется пирофосфат и образуется фосфодиэфирная связь. Рост полинуклеотидной цепи (рис. 2) идет только с ее З'-конца, т. е. в направлении 5' : 3'. Фермент, катализирующий эту реакцию, -ДНК-полимераза не способен начать матричный синтез на одноцепочечной ДНК, если нет хотя бы олигонуклеотидного биспирального участка (так называемого затравочного олигонуклеотида) комплементарного матрице; затравочным олигонуклеотидом во многих случаях является не ДНК, а РНК.

Рис. 2. Направление роста дезоксирибонуклеотидных цепей при репликации; сплошные линии - исходная ДНК, пунктирные - новые цепи ДНК (стрелки показывают направлениеих роста); 1-репликац. вилка.

         Энергия, затрачиваемая на образование каждой новой фосфодиэфирной связи в цепи ДНК, обеспечивается расщеплением фосфатной связи между a- и b-фосфатными группами нуклеозидтрифосфата.

         ДНК-полимераза имеет один центр связывания нуклеозидтрифосфата, общий для всех четырех нуклеотидов. Выбор из среды нуклеотида, основание которого комплементарно очередному основанию матрицы, протекает без ошибок, благодаря определяющему влиянию ДНК-матрицы (исходной цепи ДНК). При некоторых мутационных повреждениях структуры ДНК-полимеразы в ряде случаев происходит включение некомплементарных нуклеотидов.

         В процессе репликации формальной ДНК на короткое время с вероятностью 10-4-10-5 возникают редкие таутомерные формы всех 4 азотистых оснований нуклеотидов, которые образуют неправильные пары. Высокая точность репликации (вероятность ошибок не превышает 10-9) обусловлена наличием механизмов, осуществляющих коррекцию (репарацию).

Информация о работе Функции нуклеиновых кислот