Коррозия. Виды защиты от коррозии

Автор: Пользователь скрыл имя, 11 Марта 2012 в 19:22, реферат

Описание работы

Коррозия металла труб происходит как снаружи под воздействием почвенного электролита (в почве всегда находится влага и растворённые в ней соли), так и внутри, вследствие примесей влаги, сероводорода и солей, содержащихся в транспортируемом углеводородном сырье. Коррозия металлических сооружений наносит большой материальный и экономический ущерб. Она приводит к преждевременному износу агрегатов, установок, линейной части трубопроводов, сокращает межремонтные сроки оборудования, вызывает дополнительные потери транспортируемого продукта.

Содержание

Коррозия. Виды защиты от коррозии.
Заводские покрытия (изоляционные покрытия)
1) Антикоррозионные покрытия трассового нанесения
а) битумно-мастичные покрытия
б) полимерные покрытия
в) комбинированные мастично-ленточные покрытия
2) Заводские покрытия
а) полиэтиленовые
б) полипропиленовые
в) комбинированные ленточно-полиэтиленовые
Электрохимическая защита
Катодная и протекторная защита
Принцип ингибиторной защиты
Дренажная защита
Заключение

Работа содержит 1 файл

Трубопроводы и оборудование в процессе эксплуатации подвергаются процессу коррозии.docx

— 119.66 Кб (Скачать)

Содержание

 

  1. Коррозия. Виды защиты от коррозии.
  2. Заводские покрытия (изоляционные покрытия)

1) Антикоррозионные покрытия трассового  нанесения

    а) битумно-мастичные  покрытия

    б) полимерные покрытия

    в) комбинированные мастично-ленточные покрытия

2) Заводские покрытия

    а) полиэтиленовые

    б) полипропиленовые

    в) комбинированные ленточно-полиэтиленовые

  1. Электрохимическая защита
  2. Катодная и протекторная защита
  3. Принцип ингибиторной защиты
  4. Дренажная защита
  5. Заключение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Трубопроводы  и оборудование в процессе эксплуатации подвергаются процессу коррозии.

Коррозия  металла труб происходит как снаружи  под воздействием почвенного электролита (в почве всегда находится влага  и растворённые в ней соли), так  и внутри, вследствие примесей влаги, сероводорода и солей, содержащихся в транспортируемом углеводородном сырье. Коррозия металлических сооружений наносит большой материальный и  экономический ущерб. Она приводит к преждевременному износу агрегатов, установок, линейной части трубопроводов, сокращает межремонтные сроки оборудования, вызывает дополнительные потери транспортируемого  продукта.

При подземной  прокладке стальные трубопроводы подвергаются почвенной коррозии. В грунтах почти всегда содержатся соли, кислоты, щелочи и органические вещества, которые вредно действуют на стенки стальных труб. В некоторых случаях такая коррозия может вызвать очень быстрое появление сквозных свищей в металле трубы и этим вывести трубопровод из строя, такие разрушения происходят особенно часто в трубопроводах, уложенных без достаточной защиты от коррозии.

Успешная  защита трубопроводных систем от коррозии может быть осуществлена при своевременном  обнаружении коррозионных разрушений, определении их величины и выборе защитных мероприятий. В начальный период эксплуатации состояние трубопровода определяется качеством проектирования и строительства. Влияние этих факторов уменьшается во времени и доминирующее значение приобретают условия работы трубопровода. В процессе работы изменение технического состояния транспортной магистрали происходит под воздействием эксплуатационных факторов, одним из которых является коррозия внутренней и внешней поверхности труб.

Коррозия  в зависимости от механизма реакций, протекающих на поверхности металла, подразделяется на химическую и электрохимическую.

Рассмотрим  электрохимическую коррозию. Электрохимическая коррозия (коррозионное разрушение) возникает под действием коррозионно-активной среды, разнообразна по характеру, вызывает большинство коррозионных разрушений трубопроводов и оборудования. Электрохимическая коррозия протекает с наличием двух процессов — катодного и анодного.

Электрохимическая коррозия является гетерогенной электрохимической реакцией. Она подразделяется на коррозию в электролитах, почвенную, электрокоррозию, атмосферную, биокоррозию, контактную. Во всех случаях окисление металлов происходит за счет возникновения электрического тока, протекают анодные и катодные процессы на различных участках поверхности и продукты коррозии образуются на анодных участках. При электрохимической коррозии одновременно протекают два процесса - окислительный (аноидный), вызывающий растворение металла на одном участке, и восстановительный (катодный), связанный с выделением катиона из раствора, восстановлением кислорода и других окислителей на другом. В результате возникают микрогальванические элементы, и появляется электрический ток, обусловленный электронной проводимостью металла и ионной проводимостью раствора электролита. Анодные и катодные процессы локализуются на тех участках, где их протекание облегчено. Причины, вызывающие электрохимическую неоднородность поверхности, весьма многочисленны: макро- и микронеоднородности металла; фазовая и структурная неоднородность сплавов; неоднородность и несплошность поверхностных пленок; неоднородность деформаций и напряжений. Кроме того, неоднородны и жидкие фазы, контактирующие с поверхностью.

Для возникновения  тока при электрохимической коррозии металла необходимо наличие катодной и анодной зон. В анодной зоне протекает реакция окисления, заключающаяся  в потере металлом своих электронов и образовании ион-атомов

 

Me →Ме n+ + n ∙ẽ.

 

Переходя  в раствор электролита, ион-атомы металла вызывают его постепенное разрушение — коррозию.

В катодной зоне протекает реакция восстановления — присоединения свободных электронов каким-либо веществом, называемым деполяризатором. Если роль деполяризатора играют ионы водорода 2Н+ + 2е → 2Н → Н2, то такая реакция называется реакцией водородной деполяризации. Если же деполяризатором выступает кислород

 

О2 + 4Н+ + 4 ẽ → 2Н2О — в кислой среде,

О2 + 2Н2О + 4 ẽ → 4(ОН) — в щелочной среде,

 

то такая  реакция называется реакцией кислородной деполяризации.

Из рассмотрения механизма электрохимической коррозии следует, что интенсивность процесса зависит от скорости образования  ион-атомов металла (и свободных электронов), а также наличия кислорода и воды. Учитывая, что на скорость образования ион-атомов влияет температура, концентрация раствора электролита и другие внешние условия, можно сделать заключение, что если на поверхности одного и того же металла создать различные условия, то одна часть его поверхности станет анодом по отношению к другой.

Примеры образования гальванических элементов  из одного металла приведены на рис. 1.

 

Рисунок 1 — Примеры образования гальванических элементов

 

В первом случае анодом является электрод, помещенный в подогретый электролит. Это связано  с тем, что в подогретом электролите  растворение металла происходит более интенсивно. Аналогичная картина  наблюдается и в слабоконцентрированном растворе собственной соли по сравнению с концентрированным раствором этой соли. Наконец, при подаче к одному из электродов воздуха на нем облегчается протекание реакции кислородной деполяризации, характерной для катода.

 

Рисунок 2 — Примеры возникновения коррозионных элементов на трубопроводе в результате различия условий на поверхности металла: А — анодная зона; К — катодная зона (стрелки указывают направление движения ион-атомов металла). К образованию коррозионных элементов на поверхности трубопроводов приводит различный доступ кислорода к разным участкам его поверхности, разная влажность грунта, неоднородность микроструктуры металла. Примеры возникновения коррозионных элементов приведены на рисунке 2.

Защита металлов от коррозии

В соответствии с рассмотренными ранее механизмами  коррозию металлов можно затормозить  изменением потенциала металла, пассивацией  металла, снижением концентрации окислителя, изоляцией поверхности металла  от окислителя, изменением состава  металла и др. При разработке методов  защиты от коррозии используют указанные  способы снижения скорости коррозии, которые меняются в зависимости  от характера коррозии и условий  ее протекания. Выбор способа определяется его эффективностью, а также экономической целесообразностью. Все методы защиты условно делятся на следующие группы: а) легирование металлов; б) защитные покрытия (металлические, неметаллические); в) электрохимическая защита; г) изменение свойств коррозионной среды; д) рациональное конструирование изделий.

Рассмотрим  электрохимическую защиту металлов и защитные покрытия.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Защитные покрытия.

Изоляционные  покрытия обеспечивают первичную ("пассивную") защиту трубопроводов от коррозии, выполняя функцию "диффузионного  барьера", через который затрудняется доступ к металлу коррозионноактивных агентов (воды, кислорода воздуха). При появлении в покрытии дефектов предусматривается система катодной защиты трубопроводов - "активная" защита от коррозии.

Для того, чтобы защитное покрытие эффективно выполняло свои функции, оно должно удовлетворять целому ряду требований, основными из которых являются: низкая влагокислородопроницаемость, высокие механические характеристики, высокая и стабильная во времени адгезия покрытия к стали, стойкость к катодному отслаиванию, хорошие диэлектрические характеристики, устойчивость покрытия к тепловому старению. Изоляционные покрытия должны выполнять свои функции в широком интервале температур строительства и эксплуатации трубопроводов, обеспечивая их защиту от коррозии на максимально возможный срок их эксплуатации.

Рассмотрим  основные типы современных антикоррозионных покрытий трубопроводов заводского и трассового нанесения, их область применения.

Антикоррозионные  покрытия трубопроводов трассового нанесения

Для изоляции трубопроводов в трассовых условиях в настоящее время наиболее широко применяют три типа защитных покрытий:

а) битумно-мастичные покрытия. В настоящее время применяют преимущественно полимерные защитные покрытия толщиной не менее 0,5 мм, грунтовку битумную или битумно-полимерную, слой мастики битумной или битумно-полимерной, слой армирующего материала (стеклохолст или стеклосетка), второй слой изоляционной мастики, второй слой армирующего материала, наружный слой защитной полимерной обертки. Общая толщина битумно-мастичного покрытия усиленного типа составляет не менее 6,0 мм, а для покрытия трассового нанесения нормального типа - не менее 4,0 мм. В качестве изоляционных мастик для нанесения битумно-мастичных покрытий применяются: битумно-резиновые мастики, битумно-полимерные мастики (с добавками полиэтилена, атактического полипропилена), битумные мастики с добавками термоэластопластов, мастики на основе асфальтосмолистых соединений типа "Асмол". В последние годы появился целый ряд битумных мастик нового поколения, обладающих повышенными показателями свойств. Срок службы битумных покрытий ограничен и, как правило, не превышает 10-15 лет. Рекомендуемая область применения битумно-мастичных покрытий - защита от коррозии трубопроводов малых и средних диаметров, работающих при нормальных температурах эксплуатации. В соответствии с требованиями ГОСТа Р 51164-98 применение битумных покрытий ограничивается диаметрами трубопроводов не более 820 мм и температурой эксплуатации не выше плюс 40 °С.

б) Полимерные ленточные покрытия. К настоящему времени на долю полимерных ленточных покрытий на российских газопроводах приходится до 60-65% от их общей протяженности. Конструкция полимерного ленточного покрытия трассового нанесения состоит из слоя адгезионной грунтовки, 1 слоя полимерной изоляционной ленты толщиной не менее 0,6 мм и 1 слоя защитной полимерной обертки толщиной не менее 0,6 мм. Общая толщина покрытия - не менее 1,2 мм.

При заводской  изоляции труб количество слоев изоляционной ленты и обертки увеличивается. При этом общая толщина покрытия должна составлять: не менее 1,2 мм - для  труб диаметром до 273 мм, не менее 1,8 мм - для труб диаметром до 530 мм и  не менее 2,4 мм - для труб диаметром  до 820 мм включительно. Для нефтепроводов  допускается применять ленточные  покрытия трассового нанесения при  изоляции труб диаметром до 1420 мм, но при этом общая толщина покрытия должна составлять не менее 1,8 мм (наносятся 2 слоя полимерной ленты и 1 слой защитной обертки).

В системе  полимерного ленточного покрытия функции  изоляционной ленты и защитной обертки  различные. Изоляционная лента обеспечивает адгезию покрытия к стали (не менее 2 кг/см ширины), стойкость к катодному  отслаиванию, выполняет функции  защитного барьера, препятствующего  проникновению к поверхности  труб воды, почвенного электролита, кислорода, т.е. коррозионноактивных агентов. Защитная обертка служит в основном для повышения механической, ударной прочности покрытия. Она предохраняет ленточное покрытие от повреждений при укладке трубопровода в траншею и засыпке его грунтом, а также при усадке грунта и технологических подвижках трубопровода.

Опыт  эксплуатации отечественных газонефтепроводов показал, что срок службы полимерных ленточных покрытий на трубопроводах диаметром 1020 мм и выше составляет от 7 до 15 лет, что в 2-4 раза меньше нормативного срока амортизации магистральных трубопроводов (не менее 33 лет). В настоящее время в ОАО "Газпром" проводятся масштабные работы по ремонту и переизоляции трубопроводов с наружными полимерными ленточными покрытиями после 20-30 лет их эксплуатации.

в) Комбинированные мастично-ленточные покрытия. Конструктивно покрытие состоит из слоя адгезионного праймера, слоя изоляционной мастики на основе битума или асфальтосмолистых соединений, слоя изоляционной полимерной ленты толщиной не менее 0,4 мм и слоя полимерной защитной обертки толщиной не менее 0,5 мм. Общая толщина комбинированного мастично-ленточного покрытия составляет не менее 4,0 мм. При нанесении изоляционной битумной мастики в зимнее время ее, как правило, пластифицируют, вводят добавки специальных масел, которые предотвращают охрупчивание мастики при отрицательных температурах окружающей среды. Битумная мастика, наносимая по праймеру, обеспечивает адгезию покрытия к стали, и является основным изоляционным слоем покрытия. Полимерная лента и защитная обертка повышают механические характеристики и ударную прочность покрытия, обеспечивают равномерное распределение изоляционного мастичного слоя по периметру и длине трубопровода. При этом в конструкции битумно-ленточного покрытия применяют преимущественно полиэтиленовые термоусаживающиеся ленты, обладающие повышенной теплостойкостью и высокими механическими характеристиками, а в качестве изоляционных мастик используют специальные модифицированные битумные мастики нового поколения.

Информация о работе Коррозия. Виды защиты от коррозии