Полупроводниковые материалы

Автор: Пользователь скрыл имя, 27 Декабря 2010 в 14:52, реферат

Описание работы

Полупроводники представляют собой обширную группу веществ, занимающих по величине удельного сопротивления промежуточное положение между диэлектриками и проводниками. Диапазон удельного сопротивления полупроводников при комнатной температуре условно ограничивают значениями 106-108Ом-м. Отличительным свойством полупроводников является сильная зависимость их удельного сопротивления от концентрации примесей. При введении примесей изменяется не только значение проводимости, но и характер ее температурной зависимости.

Работа содержит 1 файл

Легированные стали.doc

— 986.50 Кб (Скачать)

Германий кристаллизуется в кубической структуре типа алмаза, параметр элементарной ячейки а = 5, 6575. Плотность твёрдого германия 5,327 г/см3 (25°С); жидкого 5,557 (1000°С); tпл 937,5°С; tkип около 2700°С; коэффициент теплопроводности ~60 вт/(м (К), или 0,14 кал/(см (сек (град) при 25°С. Даже весьма чистый германий хрупок при обычной температуре, но выше 550°С поддаётся пластической деформации. Твёрдость германия по минералогической шкале 6—6,5; коэффициент сжимаемости (в интервале давлений 0—120 Гн/м2 или 0—12000 кгс/мм2) 1,4·10—7 м2/мн (1,4·10—6 см2/кгс); поверхностное натяжение 0,6 н/м (600 дин/см). Германий — типичный полупроводник с шириной запрещенной зоны 1,104·10—19, или 0,69 эв (25°С); удельное электросопротивление германия высокой чистоты 0,60 ом (м (60 ом (см) при 25°С; подвижность электронов 3900 и подвижность дырок 1900 см2. сек (25°С) (при содержании примесей менее 10—8%). Прозрачен для инфракрасных лучей с длиной волны больше 2 мкм 

2.2 Соединения германия 

 В  химических соединениях германий обычно проявляет валентности 2 и 4, причём более стабильны соединения 4-валентного германия. При комнатной температуре германий устойчив к действию воздуха, воды, растворам щелочей и разбавленных соляной и серной кислот, но легко растворяется в царской водке и в щелочном растворе перекиси водорода. Азотной кислотой медленно окисляется. При нагревании на воздухе до 500—700°С германий окисляется до окиси GeO и двуокиси GeO2. Двуокись германия — белый порошок с tпл 1116°С; растворимость в воде 4,3 г/л (20°С). По химическим свойствам амфотерна, растворяется в щелочах и с трудом в минеральных кислотах. Получается прокаливанием гидратного осадка (GeO2. nH2O), выделяемого при гидролизе тетрахлорида GeCl4. Сплавлением GeO2 с др. окислами могут быть получены производные германиевой кислоты — германаты металлов (In2CeO3, Na2Ge О3 и др.) — твёрдые вещества с высокими температурами плавления. 

При взаимодействии Г. с галогенами образуются соответствующие  тетрагалогениды. Наиболее легко реакция протекает с фтором и хлором (уже при комнатной температуре), затем с бромом (слабое нагревание) и с иодом (при 700—800°С в присутствии CO). Одно из наиболее важных соединений германия тетрахлорид GeCl4 — бесцветная жидкость; tпл —49,5°С; tkип 83,1°С; плотность 1,84 г/см3 (20°С). Водой сильно гидролизуется с выделением осадка гидратированной двуокиси. Получается хлорированием металлического германия или взаимодействием GeO2 с концентрированной НС1. Известны также дигалогениды Г. общей формулы GeX2, монохлорид GeCl, гексахлордигерман Ge2Cl6 и оксихлориды Г. (например, GeOCl2). 

 Сера  энергично взаимодействует с  германием при 900—1000°С с образованием дисульфида GeS2 — белого твёрдого вещества, tпл 825°С. Описаны также моносульфид GeS и аналогичные соединения германия с селеном и теллуром, которые являются полупроводниками. Водород незначительно реагирует с Г. при 1000—1100°С с образованием гермина (GeH) x — малоустойчивого и легко летучего соединения. Взаимодействием германидов с разбавленной соляной кислотой могут быть получены германоводороды ряда GenH2n+2 вплоть до Ge9H20. Известен также гермилен состава GeH2. С азотом германий непосредственно не реагирует, однако существует нитрид Ge3N4, получающийся при действии аммиака на германий при 700—800°С. С углеродом германий не взаимодействует. Германий образует соединения со многими металлами — германиды.  

 Известны  многочисленные комплексные соединения  германия, которые приобретают всё большее значение как в аналитической химии германия, так и в процессах его получения. Германий образует комплексные соединения с органическими гидроксилсодержащими молекулами (многоатомными спиртами, многоосновными кислотами и др.). Получены гетерополикислоты германия. Так же, как и для других элементов IV группы, для германия характерно образование металлорганических соединений, примером которых служит тетраэтилгерман (C2H5)4 Ge3 

 

2.3 Получение германия.

 В  промышленной практике германий получают преимущественно из побочных продуктов переработки руд цветных металлов (цинковой обманки, цинково-медно-свинцовых полиметаллических концентратов), содержащих 0,001—0,1% германия. В качестве сырья используют также золы от сжигания угля, пыль газогенераторов и отходы коксохимических заводов. Первоначально из перечисленных источников различными способами, зависящими от состава сырья, получают германиевый концентрат (2—10% германия). Извлечение германия из концентрата обычно включает следующие стадии:

1) хлорирование  концентрата соляной кислотой, смесью  её с хлором в водной среде  или др. хлорирующими агентами  с получением технического GeCl4. Эти процессы можно представить уравнениями реакций: 
GeO2+4HCl=GeCl4+2H2O.

2) Гидролиз GeCl4 и прокаливание продуктов гидролиза до получения GeO2. Температура кипения полученного тетрахлорида германия 83° C. Так как вместе с ним в сконденсированной жидкости имеются и другие соединения, то его подвергают ректификации и экстракции примесей концентрированной HCl. После этого тетрахлорид германия переводят в двуокись по уравнению 
GeCl4+(x+2)H2O=GeO2xH2O+4HCl.

3) Восстановление GeO водородом или аммиаком до  металла. Полученную чистую двуокись германия восстанавливают в трубчатой электрической печи водородом. Восстановление протекает по реакции 
GeO2+2H2=Ge+2H2O, 
При температуре 600°C, в течение 20-50 мин, после чего лодочка с восстановленным германием передвигается в зону более высоких температур и при 1000-1100°C происходит сплавление.

Для выделения  очень чистого германия, используемого в полупроводниковых приборах, проводится зонная плавка металла. Необходимый для полупроводниковой промышленности монокристаллический германий получают обычно зонной плавкой или методом Чохральского.

2.4 Применение германия 
Германий — один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей.Германиевые диоды и триоды нашли широкое применение в радиоприемниках и телевизорах, счетно-решающих устройствах и в разнообразной измерительной аппаратуре.Германий применяют и в других первостепенно важных областях современной техники: для измерения низких температур.

Монокристаллический германий применяется также в дозиметрических приборах и приборах, измеряющих напряжённость постоянных и переменных магнитных полей. Важной областью применения германия является инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8—14 мк. Перспективны для практического использования многие сплавы, в состав которых входят германий, стекла на основе GeO2 и др. соединения германия.

Полупроводник германий нашел применение при решении  другой важной проблемы – созданию сверхпроводящих материалов, работающих при температуре жидкого водорода, а не жидкого гелия. Водород, как  известно, переходит из газообразного в жидкое состояние при температуре – 252,6°C, или 20,5°К. В начале 70-х годов была получена пленка из сплава германия с ниобием толщиной всего в несколько тысяч атомов. Эта пленка сохраняет сверхпроводимость при температуре 23,2°К и ниже.

2.5 Заменители германия

 Более дешевый  кремнии и сплавы Ga, In,Se,. Те могут  заменить германий в некоторых  электронных применениях. Замена  металлического германия подложками  из стекла в инфракрасных системах  не всегда эффективна. 
Исследуются возможности использования новых катализаторов для замены германия при получении пластиков. Тенденция к обесцвечиванию пластиков способствует появлению катализаторов на алюминиевой и титановой основе, при этом также снижаются затраты на производство пластиков.

 

3. Методы измерения  удельной проводимости полупроводников

3.1 Проводимость полупроводников

При приложении электрического поля к однородному  полупроводнику в последнем протекает  электрический ток. Рассмотрим для примера электронный полупроводник (3.1). Плотность тока определяется концентрацией свободных носителей n , средней дрейфовой скоростью и зарядом e :

                                              .                                                  (3.1)

      Средняя скорость дрейфа очень просто связана с параметром, характеризующим рассеяние носителей заряда при их движении в решётке кристалла - средним временем свободного пробега носителей , напряжённостью электрического поля , зарядом и эффективной массой дырки или электрона (3.1):

                                ,                                           (3.2)

где m - подвижность.

      Таким образом, из (3.1), (3.2) следует

                                     ,                                               (3.3)

а из закона Ома в дифференциальной форме  следует, что величина e×n×m имеет смысл удельной электрической проводимости:

                                            .                                                   (3.4)

Если  имеется полупроводник с обоими типами носителей заряда, то

                                  

                                            s = e(nmn + pmp) .                                                (3.5)

При наличии  двух типов свободных носителей - электронов и дырок - проводимость σ полупроводника будет определяться суммой электронной σn и дырочной σp компонент проводимости σ=σnp. Величина электронной и дырочной компонент в полной проводимости определяется классическим соотношением:

   (3.6)

где μn и μp - подвижности электронов и дырок соответственно.

Для легированных полупроводников концентрация основных носителей всегда существенно больше, чем концентрация неосновных носителей, поэтому проводимость таких полупроводников будет определяться только компонентой проводимости основных носителей. Так, для полупроводника n-типа

   (3.7)

Величина, обратная удельной проводимости, называется удельным сопротивлением:

   (3.8)

Здесь ρ - удельное сопротивление, обычно измеряемое в  единицах [Ом·см]. Для типичных полупроводников, используемых в производстве интегральных схем, величина удельного сопротивления находится в диапазоне ρ = (1 ÷ 10) Ом·см.

В отраслевых стандартах для маркировки полупроводниковых  пластин обычно используют следующее  сокращенное обозначение типа: КЭФ-4,5. В этих обозначениях первые три буквы обозначают название полупроводника, тип проводимости, наименование легирующей примеси. Цифры после букв означают удельное сопротивление, выраженное во внесистемных единицах, - Ом·см. Например, ГДА-0,2 - германий, дырочного типа проводимости, легированный алюминием, с удельным сопротивлением ρ = 0,2 Ом·см; КЭФ-4,5 - кремний, электронного типа проводимости, легированный фосфором, с удельным сопротивлением ρ = 4,5 Ом·см.

Если полупроводник  легирован примесными атомами какого либо одного сорта с малой энергией ионизации (например,  атомами B, P, As в Si и Ge ), то приближённо можно считать, что уже при комнатной температуре вся примесь однократно ионизирована, т.е. n » N или p»N, где N - полная концентрация легирующей примеси. И, если известно m , то по s или по r , которые можно непосредственно измерить, определяется N. Концентрация легирующей примеси является очень важным параметром полупроводникового материала. Непосредственно для наиболее важных полупроводниковых материалов (Si, Ge, GaAs) обоих типов N удобно определять по графику Ирвина.(см. рис.3.1.)

Рис.3.1.График Ирвина. Зависимость удельного сопротивления от концентрации легирующей примеси для полупроводников N и P типа проводимости. 

Информация о работе Полупроводниковые материалы