Современные биотехнологии

Автор: a*************@yandex.ru , 24 Ноября 2011 в 20:32, реферат

Описание работы

Понятие биотехнологий, несмотря на его научную принадлежность, сегодня широко используется в лексиконе современных людей. Оно звучит с экранов телевизоров, об этом пишут в газетах, интернет полон статей по проблематике биотехнологий, с этим понятием знакомы даже школьники. Это обусловлено активным развитием и замечательными перспективами использования биотехнологий, их ролью в жизни широких масс населения. Помимо очевидной научной ценности, биотехнологии стали занимать значительную нишу в экономике развитых стран, в том числе и в России. Развитие биотехнологий наше государство обоснованно считает важнейшей задачей как с точки зрения развития наукоемких и конкурентных отраслей экономики, так и с точки зрения безопасности. Развитие биотехнологий поддерживается в рамках реализуемой в настоящее время Федеральной целевой программы «Научно-технологическая база России» на 2007—2012 годы.

Содержание

Введение;
Понятие биотехнологии;
Этапы развития биотехнологии;
История развития биотехнологии (даты, события);
Биотехнология на службе народного хозяйства, медицины и науке:
Биотехнология и сельское хозяйство. Биотехнология и растениеводство;
Биотехнология и животноводство;
Технологическая биоэнергетика;
Биотехнология и медицина;
Биотехнология и пищевая промышленность;
Биогеотехнология;
Биотехнология охраны окружающей среды;
Биоэлектроника.
Заключение;
Список литературы.

Работа содержит 1 файл

Документ Microsoft Word.docx

— 77.91 Кб (Скачать)

Московский  Государственный Вечерний Металлургический

институт 
 
 

Курсовая  работа

по дисциплине общая химическая технология

на тему: «Современная биотехнология» 
 
 
 

             Студент: Жеребина Н.С.            Преподаватель: доцент, кандидат 

               хим. наук Кругликова Е.С.

                           Группа: МЭ-07 
 
 
 
 

Москва 2010 

Оглавление:

Введение;

  1. Понятие биотехнологии;
  2. Этапы развития биотехнологии;
  3. История развития биотехнологии (даты, события);
  4. Биотехнология на службе народного хозяйства, медицины и науке:
  1. Биотехнология и сельское хозяйство. Биотехнология и растениеводство;
  1. Биотехнология и животноводство;
  2. Технологическая биоэнергетика;
  3. Биотехнология и медицина;
  4. Биотехнология и пищевая промышленность;
  5. Биогеотехнология;
  6. Биотехнология охраны окружающей среды;
  7. Биоэлектроника.

Заключение;

Список литературы. 
 
 
 
 
 
 
 

Введение 

Понятие биотехнологий, несмотря на его научную принадлежность, сегодня широко используется в лексиконе современных людей. Оно звучит с экранов телевизоров, об этом пишут в газетах, интернет полон статей по проблематике биотехнологий, с этим понятием знакомы даже школьники. Это обусловлено активным развитием и замечательными перспективами использования биотехнологий, их ролью в жизни широких масс населения. Помимо очевидной научной ценности, биотехнологии стали занимать значительную нишу в экономике развитых стран, в том числе и в России. Развитие биотехнологий наше государство обоснованно считает важнейшей задачей как с точки зрения развития наукоемких и конкурентных отраслей экономики, так и с точки зрения безопасности. Развитие биотехнологий поддерживается в рамках реализуемой в настоящее время Федеральной целевой программы «Научно-технологическая база России» на 2007—2012 годы.

 

  1. Понятие биотехнологии.
 

Впервые термин "биотехнология" применил венгерский инженер Карл Эреки в 1917 году. Биотехнология - это интеграция естественных и инже-нерных наук, позволяющая наиболее полно реализовать возможности живых организмов или их производные для создания и модификации продуктов или процессов различного назначения. Биотехнология - это производство, основанное на последних достижениях современной науки: генной инженерии, физико-химии ферментов, молекулярной диагностики, селекционной генетики, микробиологии, химии антибиотиков, комбинаторной химии. [2, с.3] Чаще всего применяется в медицине, пищевой промышленности, также для решение проблем в области энергетики, охране окружающей среды. Современные биотехнологии защиты окружающей среды, основаны на применении биопрепаратов, в состав которых входят разнообразные бактерии (микроорганизмы), способные разлагать различные органические вещества, в том числе и те, которые загрязняют окружающую среду. Микроорганизмы - это удивительные создания природы, обладающие уникальными свойствами. Они - самые многочисленные обитатели нашей планеты. Среда обитания микроорганизмов охватывает весьма широкие зоны биосферы, зачастую с экстремальными условиями обитания, где не могут развиваться ни рас-тения, ни животные. Их повсеместное распространение обусловлено не-большими размерами, позволяющими легко переноситься с потоками воды и воздуха, а также высокой устойчивостью к экстремальным фак-торам среды. Обладая высокой химической активностью, они способны к разложению органических веществ как природного, так и антропогенного происхождения. Именно на этих уникальных свойствах микроорганизмов базируется применение биотехнологии, как эффективного способа защиты и восстановления окружающей среды.

  1. Этапы развития биотехнологии.

В развитии биотехнологии выделяют следующие  периоды:

  • эмпирический,
  • научный,
  • современный (молекулярный).

Последний специально отделяется от предыдущего, так как биотехнологии уже могут создавать и использовать в производстве неприродные организмы, полученные генно-инженерными методами.

Эмпирическая  биотехнология неотделима от цивилизации, преимущественно как сфера производства (с древнейших времен – при-готовление теста, получение молочнокислых продуктов, виноделие, пивоварение, ферментация табака и чая, выделка кож и обработка рас-тительных волокон). В течение тысячелетий человек применял в своих целях ферментативные процессы, не имея понятия ни о ферментах, ни о клетках с их видовой специфичностью и, тем более, генетическим ап-паратом. Причем прогресс точных наук долгое время не влиял на технологические приемы, используемые в эмпирической биотехнологии.

Быстрое развитие биотехнологии как научной дисциплины с середины XIX в. было инициировано работами Луи Пастера (1822 – 1895). Именно Пастер ввел понятие биообъекта, не прибегая, впрочем, к такому термину, доказал «живую природу» брожений: каждое осуществлявшееся в произ-водственных условиях брожение (спиртовое, уксусное, молочнокислое и т.д.) вызывается своим микроорганизмом, а срыв производственного процесса обусловлен несоблюдением чистоты культуры микроорганизма, являющегося в данном случае биообъектом. Практическое значение этих исследований Пастера сводится к требованию поддержания чистоты культуры, т.е. к проведению производственного процесса с инди-видуальным, имеющим точные характеристики биообъектом. Ослаб-ленный патоген и животное, в организм которого он введен, могут рас-сматриваться как своеобразный биообъект, а получаемая вакцина - как биотехнологический препарат. Пастер создал строго научные основы по-лучения вакцин, тогда как замечательные достижения Э. Дженнера в борьбе с оспой были результатом освоения эмпирического опыта индийской медицины.

Современная биотехнология, основанная на достижениях молекулярной биологии, молекулярной генетики и биоорганической химии (на прак-тическом воплощении этих достижений), выросла из биотехнологии Пастера и, являясь также строго научной, отличается от последней, прежде всего тем, что способна создавать и использовать в производстве не-природные биообъекты, что отражается как на производственном про-цессе в целом, так и на свойствах новых биотехнологических продуктов.

  1. История развития биотехнологии (даты, события)

1917 г. – введен термин биотехнология

- произведен  в промышленном масштабе пенициллин;

- показано, что генетический материал представляет  собой ДНК;

1953 г. – установлена структура инсулина, расшифрована структура ДНК;

1961 г. –  учрежден журнал «Biotechnology and Bioengineering»;

1961-1966 гг. – расшифрован генетический код, оказавшийся универсальным для всех организмов;

1953-1976 гг. – расшифрована структура ДНК, ее функции в сохранении и передаче организмом наследственной информации, способность ДНК организовываться в гены;

1963 г. – осуществлён синтез биополимеров по установленной структуре;

1970 г.  – выделена первая рестрикционная эндонуклеаза;

- осуществлён  синтез ДНК;

1972 г. – синтезирован полноразмерный ген транспортной РНК;

1975 г.  – получены моноклональные антитела;

1976 г. – разработаны методы определения нуклеотидной последовательности ДНК;

1978 г. – фирма «Genentech» выпустила человеческий инсулин, полученный с помощью Е. соli;

- синтезированы  фрагменты нуклеиновых кислот;

- разрешена  к применению в Европе первая  вакцина для животных, полученная по технологии рекомбинантных ДНК;

1983 г.  – гибридные Ti-плазмиды применены для трансформации растений;

1990 г.  – официально начаты работы над проектом «геном человека»;

1994-1995 гг. – опубликованы подробные генетические и физические карты хромосом человека;

1996 г. – ежегодный объем продаж первого рекомбинантного белка (эритропоэтина) превысил 1 млрд. долларов;

1997 г. – клонировано млекопитающее из дифференцированной соматической клетки;

2003 г. – расшифрован геном (набор генов, присущий организму) человека, содержащий приблизительно 30 тысяч генов и три миллиарда «букв» молекул ДНК. 

  1. Биотехнология на службе народного  хозяйства, медицины и науке.

Биотехнологические  разработки могут внести немаловажный вклад в решение комплексных проблем народного хозяйства, здравоохранения и науки.

 Для удовлетворения  пищевых потребностей необходимо  увеличить эф-фективность растениеводства и животноводства. Именно на это, в первую очередь, нацелены усилия биотехнологов. Кроме того, биотехнология предлагает как источник кормового (возможно, и пищевого) белка клеточную массу бактерий, грибов и водорослей.

Во-вторых, повышение цен на традиционные источники  энергии (нефть, природный газ, уголь) и угроза исчерпания их запасов побудили челове-чество обратиться к альтернативным путям получения энергии. Биотех-нология может дать ценные возобновляемые энергетические источники: спирты, биогенные углеводороды, водород. Эти экологически чистые ви-ды топлива можно получать путем биоконверсии отходов промышлен-ного и сельскохозяйственного производства.

В-третьих, уже в наши дни биотехнология  оказывает реальную помощь здравоохранению. Нет сомнений в терапевтической ценности инсулина, гормона роста, интерферонов, факторов свертывания крови и иммунной системы, тромболитических ферментов, изготовленных биотехнологи-ческим путем. Помимо получения лечебных средств, биотехнология позво-ляет проводить раннюю диагностику инфекционных заболеваний и злока-чественных новообразований на основе применения препаратов анти-генов, моноклональных антител, ДНК/РНК-проб. С помощью новых вак-цинных препаратов возможно предупреждение инфекционных болезней.

В-четвертых, биотехнология может резко ограничить масштабы за-грязнения нашей планеты промышленными, сельскохозяйственными и бытовыми отходами, токсичными компонентами автомобильных выхлопов и т. д. Современные разработки нацелены на создание безотходных технологий, на получение легко разрушаемых полимеров (в частности, биогенного происхождения: поли-b-оксибутирата, поли-амилозы) и поиск новых активных микроорганизмов-разрушителей поли-меров (полиэтилена, полипропилена, полихлорвинила). Усилия биотехно-логов направлены также на борьбу с пестицидными загрязнениями — следствием неумеренного и нерационального применения ядохимикатов.

Биотехнологические  разработки играют важную роль в добыче и пере-работке полезных ископаемых, получении различных препаратов и созда-нии новой аппаратуры для аналитических целей.

  1. Биотехнология и сельское хозяйство. Биотехнология и растениеводство.

Культурные  растения страдают от сорняков, грызунов, насекомых-вреди-телей, фитопатогенных грибов, бактерий, вирусов, неблагоприятных по-годных и климатических условий. Перечисленные факторы наряду с поч-венной эрозией и градом значительно снижают урожайность сельско-хозяйственных растений. Известно, какие разрушительные последствия в картофелеводстве вызывает колорадский жук, а также гриб Phytophtora — возбудитель ранней гнили (фитофтороза) картофеля.

В последние  годы большое внимание уделяют вирусным заболеваниям растений. Наряду с болезнями, оставляющими видимые следы на куль-турных растениях (мозаичная болезнь табака и хлопчатника, зимняя болезнь томатов), вирусы вызывают скрытые инфекционные процессы, значительно снижающие урожайность сельскохозяйственных культур и ведущие к их вырождению.

Биотехнологические  пути защиты растений от рассмотренных  вредо-носных агентов включают: 1) выведение сортов растений, устойчивых к не-благоприятным факторам; 2) химические средства борьбы (пестициды) с сорняками (гербициды), грызунами (ратициды), насекомыми (инсе-ктициды), фитопатогенными грибами (фунгициды), бактериями, вирусами; 3) биологические средства борьбы с вредителями, использование их естес-твенных врагов и паразитов, а также токсических продуктов, образуемых живыми организмами.

Наряду с  защитой растений ставится задача повышения  продуктивности сельскохозяйственных культур, их пищевой (кормовой) ценности, задача создания сортов растений, растущих на засоленных почвах, в засушливых и заболоченных районах. Разработки нацелены на повышение энер-гетической эффективности различных процессов в растительных тканях, начиная от поглощения кванта света и кончая ассимиляцией СО2 и водно-солевым обменом.

Информация о работе Современные биотехнологии