Ядерные и химические реакции. Реакции распада и синтеза

Автор: Пользователь скрыл имя, 11 Января 2013 в 12:02, контрольная работа

Описание работы

Химия — наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий.

Содержание

Введение 3
1. Реакции химические 4
2. Ядерные реакции 6
3. Реакция распада и синтеза 10
3.1 Реакция синтеза 10
3.2. Реакция распада 10
Заключение 13
Литература 14

Работа содержит 1 файл

КР По естествознанию! - копия.doc

— 131.00 Кб (Скачать)

 

РОССИЙСКАЯ ФЕДЕРАЦИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И  НАУКИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ  УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ЦЕНТР СЕТЕВЫХ ОБРАЗОВАТЕЛЬНЫХ  ТЕХНОЛОГИЙ

СПЕЦИАЛЬНОСТЬ « МЕНЕДЖМЕНТ ОРГАНИЗАЦИИ»

 

 

 

 

 

 

 

К О Н Т  Р О Л Ь Н А Я       Р А Б О Т А

 

По предмету: «История государства и права зарубежных стран»

Тема: Ядерные и химические реакции. Реакции распада и синтеза.

 

 

 

 

 

 

 

 

 

 

Выполнил: Ли Павел

Студент  1  курса

первый семестр

 

 

 

 

 

2011

 

Содержание

 

Введение

 

Естествознание — область науки, изучающая естественные науки. Естествознание, появилось более 3000 лет назад. Тогда не было разделения на физику, биологию, географию. Науками занимались философы. С развитием торговли и мореплавания началось развитие географии, а с развитием техники развитие физики, химии.

Химия — наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий.

Зачатки химии возникли ещё со времён появления человека разумного. Поскольку человек всегда так или иначе имел дело с химическими веществами, то его первые эксперименты с огнём, дублением шкур, приготовлением пищи можно назвать зачатками практической химии. Постепенно практические знания накапливались, и в самом начале развития цивилизации люди умели готовить некоторые краски, эмали, яды и лекарства. Вначале человек использовал биологические процессы, такие как брожение, гниение, но с освоением огня начал использовать процессы горения, спекания, сплавления. Использовались окислительно-восстановительные реакции, не протекающие в живой природе — например, восстановление металлов из их соединений.

Химия как фундаментальная наука  окончательно сформировалась лишь в  XX в.

 

1. Реакции химические

Реакции химические – это превращения одних веществ в другие, отличные от исходных по химическому составу или строению. Общее число атомов каждого данного элемента, а также сами химические элементы, составляющие вещества, остаются в химических реакциях неизмененными; этим они отличаются от ядерных реакций. Химические реакции осуществляются при взаимодействии веществ между собой или при внешних воздействиях на них температуры, давления, электрического и магнитного полей и т.п. В ходе Реакций химических одни вещества (реагенты) превращаются в другие (продукты реакции), что записывается в виде уравнений химических. Реагенты и продукты реакции часто носят общее название реактанты. Каждая химическая реакция характеризуется стехиометрическим соотношением реактантов и скоростью химической реакции. Совокупность отдельных стадий Реакций химических, установленная экспериментально или предложенная на основе теоретических представлений, называется механизмом реакции. 

 Любая химическая реакция обратима, хотя скорости прямой и обратной реакций могут при этом существенно отличаться. Когда скорости прямой и обратной реакций равны, система находится в химическом равновесии. В положении равновесия или вблизи него поведение системы описывается законами и соотношениями химической термодинамики. В целом изучение механизмов и скоростей как обратимых, так и практически необратимых Химические реакции составляют предмет химической кинетики, а при учёте также и физических процессов в системе (диффузия, теплопередача и др.) — предмет макрокинетики. При изучении химических реакций на молекулярном уровне используют представления о взаимодействии атомов и молекул при их столкновениях друг с другом, с электронами и др. частицами, о превращениях молекул при поглощении и испускании фотонов и т.п. Этот подход базируется, как правило, на квантовой теории и связан в основном с изучением элементарного акта химических реакций. Квантовомеханическое описание элементарного акта базируется на одном из двух подходов. При временном подходе элементарный акт рассматривается как процесс рассеяния подсистем (атомов, молекул, ионов) при их столкновении. Согласно стационарному подходу, исследуется движение конфигурационной точки (изображающей ядерную конфигурацию всей системы реактантов) по потенциальной поверхности, определяемой взаимодействием подсистем реактантов, в частности ядер молекул в усреднённом поле электронов. Начало стационарному подходу было положено введением представления об активированном комплексе. При сравнительном рассмотрении реакций, особенно в органической химии, пользуются обычно представлениями о наиболее вероятных механизмах реакций и об активности реагентов в определённых классах реакций, такими как реакционная способность, ориентации правила, нуклеофильные и электрофильные реагенты, принцип сохранения орбитальной симметрии и т.п.

 Химические реакции существенно зависят как от природы реактантов, так и от внешних условий реакции. Многие Реакции химические возможны только под воздействием внешних источников энергии: тепловой, электромагнитной (фотохимические реакции), электрической (электрохимические реакции). При этом сама химическая реакция может служить источником энергии. Количественное экспериментальное изучение химических реакций привело к установлению ряда основных законов химии, отражающих как стехиометрию, так и энергетику реакций. К таким законам относятся постоянства состава закон, Гесса закон и др. Классификация Реакций химических проводится по различным признакам и различается в зависимости от того, в какой области химии они исследуются. Термодинамическая классификация использует в качестве таких признаков: энергетику реакций (экзотермические, т. е. идущие с выделением тепла, и эндотермические, т. е. идущие с поглощением тепла); количество фаз реактантов (гомогенные и гетерогенные реакции). Различают химические реакции, идущие в объёме, на поверхности раздела фаз и т.д. Кинетическая классификация выделяет следующие признаки: скорость прямой и обратной реакций (обратимые и необратимые реакции); число взаимосвязанных реакций в системе (простая реакция, т. е. только одна, практически необратимая реакция, и сложная реакция, которую можно подразделить на несколько простых); молекулярность реакции (число молекул, одновременным взаимодействием между которыми осуществляется элементарный акт химического превращения); порядок реакции по каждому реагенту и в целом. Сложные химические реакции по форме связи простых реакций подразделяются на параллельные, последовательные, сопряжённые, обратимые и т.д. В отдельную группу выделяется обширный класс каталитических реакций. В зависимости от того, какие частицы участвуют в элементарном акте, реакции подразделяются на молекулярные, ионные, фотохимические и т.д., а также радикальные или цепные реакции. Детальное подразделение реакций проводится и по их механизму. 

 В неорганической химии широко  используется классификация  химических реакций по типам участвующих в них соединений и по характеру их взаимодействия: реакции образования и разложения, гидролиза, нейтрализации реакции, реакции окисления-восстановления. 

 Органические реакции подразделяют  на две большие группы: гетеролитические, при которых разрыв связи в  молекуле происходит несимметрично  и электроны остаются спаренными, и гомолитичные, в которых происходит  симметричный разрыв связи, в результате чего образуются радикалы. В зависимости от типа атакующего реагента гетеролитические реакции могут быть нуклеофильными (обозначаются символом N) и электрофильными (символ Е). Основные три класса органических реакций включают замещения (обозначаются символом S с индексами N или Е), присоединения (символ А) и отщепления (элиминирования, символ Е). Каждая из этих реакций в зависимости от механизма может осуществляться как нуклеофильный, электрофильный или радикальный процесс. Особый класс реакций составляют реакции циклоприсоединения. С учётом молекулярности лимитирующей стадии различают мономолекулярные (например, SE 1) и бимолекулярные (например, SE 2) реакции. Помимо указанных механизмов, присоединения и замещения реакции могут происходить в результате окислительно-восстановительного взаимодействия реагентов. Многие органические реакции включают ряд последовательных стадий, в том числе обратимых. Общая обратимость характерна для таких, например, реакций, как реакции металлирования и ароматического сульфирования. Возможны реакции, в которых промежуточные соединения вступают в параллельные реакции, что приводит к образованию смеси продуктов. Многочисленные превращения органических молекул включают процессы, происходящие без изменения состава, но приводящие к изменению химического строения (структуры) соединения, например различного типа изомеризации, молекулярные перегруппировки и таутомерные превращения.  

 Понятие Химическая реакция является в известной степени условным. Так, к числу химических реакций обычно не относят образование ассоциатов в растворах, электронные возбуждения молекул (даже при существенном изменении равновесной геометрической конфигурации) и ряд др. процессов.

2. Ядерные реакции

Ядерные реакции, превращения атомных ядер при взаимодействии с элементарными частицами, g-квантами или друг с другом. Впервые начал изучать Эрнест Резерфорд в 1919. Спонтанные (происходящие без воздействия налетающих частиц) процессы в ядрах — например, радиоактивный распад — обычно не относят к ядерным реакциям

Для осуществления ядерной реакции необходимо сближение частиц (двух ядер, ядра и нуклона и т. д.) на расстояние ~ 10-13 см. Энергия налетающих положительно заряженных частиц должна быть порядка или больше высоты кулоновского потенциального барьера ядер (для однозарядных частиц ~ 10 Мэв). В этом случае ядерная реакция, как правило, осуществляются бомбардировкой веществ (мишеней) пучками ускоренных частиц. Для отрицательно заряженных и нейтральных частиц кулоновский барьер отсутствует, и ядерная реакция может протекать даже при тепловых энергиях налетающих частиц. 

 Ядерную реакции.. записывают в виде: A (a, bcd)B, где А — ядро мишени, а — бомбардирующая частица, в, с, d — испускаемые частицы, В — остаточное ядро (в скобках записываются более лёгкие продукты реакции, вне — наиболее тяжёлые). Часто ядерная реакция может идти несколькими способами, например:  

 63Cu (р, n) 63Zn, 63 Cu (р, 2n) 62 Zn, 63 Cu (р, pn) 62 Cu, 63 Cu (p, р) 63 Cu, 63 Cu (р, p') 63 Cu. 

 Состав сталкивающихся частиц  называется входным каналом ядерной реакции, состав частиц, образующихся в результате ядерной реакции — выходным каналом. 

 Ядерная реакция — основной метод изучения структуры ядра и его свойств Однако роль их велика и за пределами физики: реакции деления тяжёлых ядер и синтеза легчайших ядер лежат в основе ядерной энергетики. Ядерная реакция используются как источник нейтронов, мезонов и других нестабильных частиц. С помощью ядерной реакции получают свыше тысячи радиоактивных нуклидов, применяемых во всех областях науки, техники и медицины. 

 Исследования ядерной реакции включают идентификацию каналов реакции, определение вероятности их возбуждения в зависимости от энергии бомбардирующих частиц, измерение угловых энергетических распределений образующихся частиц, а также их спина, чётности, изотопического спина и др. 

  Ядерные реакции подчиняются законам сохранения электрического заряда, числа нуклонов (барионного заряда), энергии и импульса. Закон сохранения числа нуклонов означает сохранение массового числа А. Ядерные реакции могут протекать с выделением и с поглощением энергии Q, которая в 106 раз превышает энергию, поглощаемую или выделяемую при химических реакциях Поэтому в ядерной реакции. можно заметить изменение масс взаимодействующих ядер. Энергия Q, выделяемая или поглощаемая при ядерной реакции, равна разности сумм масс частиц (в энергетических единицах) до и после ядерной реакции.  

 Эффективное сечение ядерной реакции — поперечное сечение, которое нужно приписать ядру с тем, чтобы каждое попадание в него бомбардирующей частицы приводило к ядерной реакции. Эффективные сечения ядерной реакции зависят от энергии бомбардирующих частиц, типа реакции, углов вылета и ориентации спинов частиц — продуктов реакции (s ~ 10-27 — 10-21 ). Максимальное сечение ядерной реакции определяется геометрическими сечениями ядер sмакс = pR2, если радиус ядра R больше, чем длина волны де Бройля частицы . Для нуклонов , когда их энергия x»10/A2/3. В области малых энергий  и сечение ядерной реакции определяет уже не R, а , например для медленных нейтронов . В промежуточной области энергий  

 Выход ядерной реакции — отношение числа актов ядерной реакции. к числу частиц, упавших на 1 см2 мишени. Для тонкой мишени и однородного потока частиц выход ядерной реакции W = ns, где n — число ядер на 1 см2 мишени. Заряженные частицы, ионизируя атомы мишени, теряют энергию и останавливаются. Их пробег в мишенях порядка мкм или см в зависимости от энергии. В результате выходы ядерной реакции также малы (10-3 — 10-6 ). Для ядерной реакции с частицами высоких энергий выход больше. Для частиц, которые могут вызывать ядерную реакцию при любой энергии (нейтроны, p-мезоны), выход при достаточно больших мишенях может достигать 1. 

 Продукты ядерной реакции образуются в небольшом количестве: для ускоренных налетающих частиц порядка нескольких мг в час; в мощных ядерных реакторах (ядерные реакции. под действием нейтронов) — нескольких г в час. Концентрация получаемых продуктов, как правило, мала. Для их выделения и идентификации используются методы радиохимии и масс-спектрометрии. Регистрация продуктов ядерной реакции осуществляется детекторами ядерных излучений. 

 Механизмы ядерных реакций. Налетающая частица, например нуклон, может войти в ядро и вылететь из него под другим углом, но с той же энергией (упругое рассеяние). Нуклон может столкнуться непосредственно с нуклоном ядра; при этом, если один или оба нуклона имеют энергию, большую, чем энергия, необходимая для вылета из ядра, то они могут покинуть ядро без взаимодействия с другими его нуклонами (прямой процесс). Существуют и более сложные прямые процессы, при которых энергия налетающей частицы передаётся непосредственно одному или небольшой группе нуклонов ядра. Если энергия, внесённая влетевшей частицей, постепенно распределится между многими нуклонами ядра, то ядерные состояния будут становиться всё более и более сложными, однако через некоторое время наступит динамическое равновесие — различные ядерные конфигурации будут возникать и распадаться в образовавшейся системе, называемой составным ядром. Составное ядро неустойчиво и через короткое время распадается на конечные продукты ядерной реакции. Если в некоторых конфигурациях энергия одного из нуклонов окажется достаточной для его выброса из ядра, то составное ядро распадается с испусканием нуклона. Если же энергия сосредоточивается в некоторых группах частиц, существующих в составном ядре короткое время, то возможно испускание альфа-частиц, тритонов, дейтронов и др. При энергиях возбуждения составного ядра, меньших энергии отделения от него частиц, единственный путь его распада — испускание g-квантов (радиационный захват). Иногда выброс частиц происходит до того, как установилось равновесие, т. е. до образования составного ядра (механизм предравновесного распада). 

Информация о работе Ядерные и химические реакции. Реакции распада и синтеза