Краткая характеристика оборудования и сооружений ГРЭС

Автор: Пользователь скрыл имя, 09 Февраля 2013 в 19:01, курсовая работа

Описание работы

Основой повышения тепловой экономичности электростанции было и является совершенствование её паросилового цикла. Простейшая паросиловая установка, состоящая из парогенератора, турбины, конденсатора и насоса, работающего по циклу Ренкина, характеризовалась предельной простатой, разумеется, относительной, но имела очень низкий КПД. Современная паросиловая установка, работающая по регенеративному циклу, имеет достаточно высокий КПД, но сложна, громоздка и дорогостоящая. Повышение тепловой экономичности цикла путем достигнуто путем усложнения и удорожания паросиловой установки.

Содержание

1 Краткая характеристика оборудования и сооружений ГРЭС
1.1 Главный корпус
1.2 Топливоснабжение ГРЭС
2 Описание тепловой схемы энергоблока 300 МВт Ириклинской ГРЭС
3 Описание конденсационной установки турбины К-300-240 ЛМЗ
4 Обеспечение гидравлической плотности конденсатора
5. Методы выявления неплотности вакуумной системы конденсационной установки при работе турбины
6 Способы очистки конденсаторных труб от отложений
7. Расчетные показатели работы конденсационной установки
8. Обслуживание конденсационной установки во время работы
9. Методика расчета сроков очистки конденсаторов
10. Расчёт срока чистки конденсатора турбины ИриклинскойГРЭС
11. Система циркуляционного водоснабжения
12. Экологические аспекты технического водоснабжения
13. Безопасность проекта
14. Электротехническая часть
Заключение
Список использованных источников литературы

Работа содержит 1 файл

Установка ПГУ-325.doc

— 549.50 Кб (Скачать)

Предназначены для поддержания  разряжения в верхних сливных  камерах конденсатора, служит эжектор  циркуляционной системы типа ЭВ-1-350. Для отсоса воздуха из ПС-115 смонтирован  дополнительно эжектор ЭВ-1-350. На блоках N 7,8 установлены эжекторы типа ЭВ-1-230. Вода на эжекторы подается от ПНЭ или со станционного коллектора ПНЭ с давлением 2,5-3 кг/см². Расход воды на эжекторы соответственно 335 м³/час и 230 м³/час.

3.3.3 Подъемные насосы эжекторов

Подъёмные насосы эжекторов (ПНЭ) предназначены для подачи циркуляционной воды из напорных водоводов на:

- основные эжекторы турбины;

- эжекторы циркуляционной системы  и эжектор ПС-115;

- на всас насосов сырой воды  ПН-1,2.

- фильтр ФС-250 и далее в коллектор  технической воды на охлаждение  подшипников: БЭН, КЭН, сливных насосов, НОУ, ДВ, ДРГ, РВП, МС ДС, на кондиционеры.

Подъёмный насос эжекторов центробежный, одноступенчатый, с двухсторонним  подводом жидкости к рабочему колесу.

Корпус насоса чугунный, литой. Подшипники шариковые, смазка кольцевая. Масло заливается через отверстие в верхней части корпуса в картер, который имеет змеевики водяного охлаждения. Одновременно отверстие служит для наблюдения за работой смазочного кольца, которое должно вращаться, подавая масло на подшипник. Уровень масла контролируется специальным щупом.

Слив загрязненного масла производится через отверстие в нижней части  корпуса подшипника. Концевые уплотнения сальник ого типа выполнены из хлопчатобумажного промасленного  шнура.

Между кольцами сальниковой набивки  имеется кольцевая камера, в которую подается вода из напорной камеры насосов, и служит для уплотнения и охлаждения сальника. На некоторых ПНЭ подшипники качения переделаны из скользящего типа с баббитовой заливкой и кольцевой смазкой.

 

3.3.4 Конденсатные насосы

Конденсатные насосы предназначены для откачки конденсата из конденсатора в деаэратор 7 ата через систему ПНД. Конденсатный электронасос вертикального типа, двухкорпусной, центробежный. Конструкция гидравлической части насоса обеспечивает при работе разгрузку значительной части осевых усилий на подшипники.

 

4 Обеспечение гидравлической плотности  конденсаторов

Высокая гидравлическая плотность  конденсатора является важным фактом обеспечения надежной и экономичной  работы турбоустановки.

Трубная система конденсатора работает в сложных условиях. В процессе эксплуатации на трубы действует сжимающее усилие, возникающее за счет разности атмосферного давления на корпус конденсатора и глубокого вакуума (0,03-0,07 кгс/см²). Кроме того, в трубах возникают дополнительные термические напряжения под влиянием разницы температур охлаждающей воды по ходам конденсатора, при этом наибольшие усилия возникают на границе между двумя соседними ходами по охлаждающей воде. На плотность влияют и условия эксплуатации. Так, резкие изменения параметров режима работы конденсатора (вакуум, расход пара, расхода охлаждающей воды и т.д.) вызывают появление дополнительных динамических и термических напряжений в трубах. Одной из причин разрушения труб также является их вибрация. Источником возмущающих сил могут быть турбина или вспомогательные механизмы, работающие с повышенной вибрацией, а также силы возмущающие силы потока. При совпадении собственной частоты колебания труб с частотой возбуждающих источников возникают резонансные колебания.

Собственная частота колебаний труб зависит от конструктивных факторов и условий работы конденсатора. На частоту колебаний влияют продольные усилия, величины вакуума и других параметров.

Частота собственных колебаний  труб определяется расчетным путем. Если будет установлено, что причиной повреждения являются резонансные колебания, необходимо реконструировать конденсатор для отстройки частот свободных колебаний труб от возбуждающих (изменение длины их пролета путем изменения числа промежуточных перегородок, толщины стенок труб и т.д.). Отстройка считается удовлетворительной при расхождении собственных и возбуждающих колебаний на 20% для второго тона и на 15% для остальных, более высоких тонов (третьего, четвертого, пятого).

При воздействии парового потока отработавшего  пара в трубе могут возникать упругие автоколебания, вызываемые аэродинамическими силами этого потока. Особенно сильному воздействию подвергаются первые по ходу пара трубы ленточных пучков. Повреждения носят характер кольцевых трещин усталостного происхождения в трубах вблизи трубных досок.

Для предотвращения подобных повреждений  необходимо при ремонте соблюдение следующих условий:

1) Обеспечивать качественную вальцовку  труб (диаметр отверстий под трубы  в промежуточных перегородках  не должен превышать чертежных  размеров, промежуточные перегородки должны быть смещены вверх для придания трубе должного изгиба, при разрушении периферийных труб рекомендуется увеличить толщину их стенок);

2) Производить отжиг труб для  снятия остаточных напряжений;

3) Выполнять при необходимости ужесточение труб путем их расклинивания (для предотвращения клиньев при работе их крепят между собой проволокой).

Коррозионные разрушения могут  быть с водяной и паровой сторон. С водяной стороны может происходить  обесцинкования металла труб (сплошное, местное, межкристаллическое или пробочного типа).

При обесцинковании растворимые соединения цинка уносятся охлаждающей водой, частицы красной меди оседают  на стенке, которая приобретает красную  пористую губчатую структуру с малой  механической прочностью.

Для предотвращения обесцинкования при  замене труб необходимо обратить особое внимание на правильность подбора материала  труб (латунь с присадкой мышьяка, сплавы МНЖ). Отжиг труб оказывает  благоприятное влияние на коррозионную стойкость.

 

5 Методы выявления не плотностей вакуумной системы конденсационной установки при работе турбины 

 

В установках с пароструйными эжекторами присосы воздуха определяются с  помощью дроссельных воздухомеров, установленных на выхлопе этих эжекторов. Присосы воздуха в установках с водоструйными эжекторами могут быть найдены путем искусственного ввода воздуха через систему сменных калиброванных сопел (метод ВТИ). Кроме того, находит применение способ оценки воздушной плотности вакуумной системы турбины по скорости падения вакуума при кратковременном закрытии задвижки на линии отсоса паровоздушной смеси из конденсатора к эжекторам с последующим открытием ее.

Разделив значение вакуума (мм рт.ст.) на время закрытия задвижки, получим  скорость падения вакуума.

При скорости 1-2-мм рт.ст./мин плотность вакуумной системы считается хорошей, при 3-4 мм рт.ст./мин – удовлетворительной.

Но этот способ не дает абсолютной величины присосов воздуха. Нормативное  значение присосов воздуха в вакуумную  систему турбин указано в ПТЭ.

Конкретные места присосов воздуха выявляются различными способами. На работающей турбине источники присосов могут быть определены с помощью течеискателей. Применяются следующие типы галоидных течеискателей: ГТИ-3 - при пароструйных, ВАГТИ-4 – при водоструйных эжекторах, ГТИ-6 – при обоих типах эжекторов.

Проверяемые на плотность места  вакуумной системы обдуваются снаружи  парами галоидов (обычно фре оном–12) из переносного баллончика оборудованного вентилем с обдувателем на конце  гибкого шланга. Проникающие через  не плотности вакуумной системы пара фре она вместе с движущейся рабочей средой поступает в конденсатор турбины и оттуда через трубопроводы отсоса неконденсирующихся газов отсасываются эжекторами. В установках с пароструйными эжекторами датчик устанавливается на выхлопе эжектора. Действие датчика основано на явлении и миссии положительных ионов из платины, нагретой до температуры 900°С. В присутствии галоидосодержащих веществ эмиссия резко увеличивается, что приводит к возрастанию силы тока в элекрической схеме прибора. Увеличение тока фиксируется отклонением стрелки амперметра, изменением светового и звукового сигналов.

Методы выявления не плотностей с помощью галоидного течеискателя позволяют выявить как крупные, так и мелкие источники присосов. Для этих целей может быть использован также ультразвуковой течеискатель ТУЗ-5М.

Принцип действия такого течеискателя основан на фиксировании колебаний  ультразвуковой частоты 32-40 кГц, которые  возникают при столкновении проникающего через не плотности воздуха с  потоком рабочей среды, движущейся в трубопроводе, аппарате и т.п.

Выявление участков вакуумной схемы  имеющих не плотности, может быть выполнена также путем изменения  режима работы турбинной установки  или отдельных ее элементов (увеличения или уменьшения давления в них, закрытия арматуры отсосов воздуха в конденсатор и т.д.). О наличии присосов судят по изменению расхода воздуха через воздухомеры эжекторов (или по изменению вакуума). Так, присосы в вакуумные ПНД могут быть определены путем кратковременного поочередного закрытия арматуры (где она имеется) на линиях отсосов неконденсирующихся газов из них. Таким же путем определяются присосы в систему отсоса уплотнения турбин и сальникового подогревателя.

Присосы в сбросные трубопроводы БРОУ, в систему дренажей, в элементы пусковой схемы могут быть определены путем создания на этих участках более высокого давления. Уменьшение присосов при снижении вакуума свидетельствует о преобладающем количестве их в районе конденсатора – ЦНД, увеличение при снижении нагрузки турбины – о расположении их в местах, находящихся при номинальной нагрузке под давлением. Некоторые места присосов могут быть выявлены по шуму «на слух» при обходе оборудования

Существует и старый способ обнаружения  их по отклонению пламени горящей  свечи, однако вблизи генераторов с водородным охлаждением он не может быть применен по соображениям пожарной безопасности.

Присосы воздуха в вакуумную  систему турбоустановки слабо влияют на эффективность работы конденсационной  установки, если количество воздуха, удаляемого из конденсатора воздухо-удаляющими устройствами, находиться в пределах значений, допускаемых согласно ПТЭ, и запас в рабочей подаче воздухо-удаляющих устройств, комплектующих данную турбоустановку, удовлетворяет рекомендациям теплового расчета конденсаторов. Это не исключает, однако, необходимости периодического контроля за воздушной плотностью вакуумной системы турбоустановки для своевременного принятия мер, необходимых для поддержания присосов воздуха в допустимых пределах. Для борьбы с этим видом коррозии необходимо снизить скорость охлаждающей воды в трубе, добиться уменьшения содержания взвешенных частиц путем очистки циркуляционной системы от отложений, а также снижения воздухо содержания охлаждающей воды.

Коррозионные разрушения с паровой  стороны вызываются присутствием в паре аммиака, кислорода, углекислого газа. Аммиачной коррозии подвержена в основном зона воздухоохладителя. Коррозия протекает в среде влажного пара. При повышенных присосах воздуха в вакуумную систему коррозия усиливается. Для предотвращения коррозионных разрушений этого вида трубы воздухоохладительных пучков выполняют из мельхиора или нержавеющей стали.

Если в процессе эксплуатации имело  место частое повреждение труб, должны быть выявлены причины этих повреждений. Отыскание дефектных труб производят после дренирования камер охлаждающей воды соответствующей половины конденсатора и вскрытия люков. Струйная коррозия приводит к разрушению входных участков труб на длине 150-200 мм с образованием в них шероховатности и сквозных язв. Появлению коррозии способствуют местные неравномерности скоростей охлаждающей воды, наличие в воде пузырьков воздуха.

 

6. Способы очистки конденсаторных  труб от отложений

На работу трубной системы конденсатора определенное влияние оказывает  загрязнение труб и применяемые методы их очистки.

Загрязнение внутренней поверхности  труб конденсатора – одна из основных причин ухудшения вакуума. Появление  слоя отложений приводит к ухудшению  теплоотдачи из-за роста термического сопротивления и уменьшения сечения  трубок, растет гидравлическое сопротивление конденсатора, что приводит к сокращению расхода охлаждающей воды.

Отложения могут быть условно разделены  на несколько групп:

1) Карбонатные отложения (накипь, образуемые из-за выпадения солей  жесткости из охлаждающей воды при нагреве её. Отложения образуют плотный и прочный слой;

2) Органические отложения, вызываемые  микроорганизмами и водорослями,  присутствующими в охлаждающей  воде. Отложения имеют характер  скользкой слизистой пленки на  внутренней поверхности труб;

3) Насосные отложения, состоящие из песка, глины, ила, продуктов коррозии металла. Как правило, они удаляются сравнительно легко механическим или гидравлическим способом;

4) Смешанные отложения, представляющие  собой комбинации вышеперечисленных  видов отложений.

Для поддержания трубных систем конденсаторов  в чистом состоянии проводятся профилактические мероприятия по предотвращению образования  отложений, а также периодические  очистки на работающей или остановленной  турбине.

Очистка конденсаторов турбин от внутренних отложений связана с большими трудозатратами. Кроме того, понижается надежность работы конденсаторов из-за возможных повреждений труб. Поэтому в процессе эксплуатации должны быть приняты все меры по предотвращению загрязнений конденсаторов.

Для предотвращения накипеобразования, имеющего место из-за накопления солей жесткости в воде при испарении части ее в градирнях и брызгальных бассейнах рекомендуется продувка оборотных систем водоснабжения, водообмен водохранилищ, обработка воды кислотой и дымовыми газами, фосфатирование, комбинированные способы.

Для предотвращения образования мягких насосных отложений применяются  периодическое увеличение скорости охлаждающей воды и непрерывная  очистка конденсаторов резиновыми шариками.

Для предотвращения образования накипи применяются также физические способы – обработка воды магнитным полем и с помощью ультразвука.Для выбора способов предотвращения загрязнений конденсатора и способа очистки его производится осмотр трубной системы. Отбирается проба отложений путем соскабливания их с труб или проталкивание через трубу в шомпола с резиновым наконечником.

Анализ  отобранных отложений в сочетании  с исследованием систем водоснабжения  позволит определить оптимальные способы  очистки.

Наряду  с метеорологическими, гидрологическими и гидротермическими исследованиями должен быть предусмотрен комплекс исследований по сезонному изменению солесодержания и гидробиологического режима охлаждающей воды.

Информация о работе Краткая характеристика оборудования и сооружений ГРЭС