Устойчивость систем автоматического управления

Автор: Пользователь скрыл имя, 30 Августа 2011 в 14:04, курсовая работа

Описание работы

Важнейшей задачей анализа динамических систем управления является решение вопроса об их устойчивости. Техническое понятие устойчивости систем автоматического управления отражает свойство технической системы не только стабильно работать в нормальных режимах, но и "не уходить вразнос" при отклонении всевозможных параметров системы от номинала и влиянии на систему дестабилизирующих воздействий, т. е. способности системе возвращаться к равновесному состоянию, из которого она выводится возмущающими или управляющими воздействиями.

Содержание

Введение.

1. Критерии устойчивости. Понятие устойчивости системы. Условие устойчивости САУ. Алгебраические критерии устойчивости. Критерий Рауса. Критерий Гурвица.

2. Частотные критерии устойчивости. Принцип аргумента. Критерий устойчивости Михайлова. Критерий устойчивости Найквиста.

3. Запас устойчивости систем. Понятие структурной устойчивости. Понятие запаса устойчивости. Анализ устойчивости по логарифмическим частотным характеристикам.

4. Точность систем. Статическая точность. Динамическая точность.

5. Качество систем. Показатели качества систем управления. Показатели качества переходного процесса. Последовательное корректирующее устройство. Параллельное корректирующее устройство. Метод Солодовникова. Программы анализа качества процессов управления.

6. Случайные процессы в системах. Модели случайных сигналов. Фильтрация помех. Фильтр Винера. Частотная характеристика фильтра.

Работа содержит 1 файл

manreg04.doc

— 449.50 Кб (Скачать)

где К(р), Н(р) - соответственно числитель и знаменатель передаточной функции разомкнутой системы; y(р) — изображение координаты системы в точке ее замыкания.

     На  основании (4.1.7) можно записать характеристическое уравнение, соответствующее дифференциальному уравнению свободного движения в замкнутой системе

К(р) + Н(р) = 0.                                                    (4.1.8)

     C учетом того, что Woc(p) = 1, передаточная функция замкнутой системы:

Wзс(p) = W(p)/[1 + W(p)],                                        (4.1.9)

где W(p)=K(p)/H(p) - передаточная функция разомкнутой системы. Или:

Wзс(p) = K(p)/[K(p) + H(p)] = K(p)/Hзс(p).                          (4.1.9')

     На  этом основании характеристическое уравнение замкнутой системы можно записать в виде

Hзс(р) = K(p) + H(p) = 0.                                          (4.1.10)

     Таким образом, приравненная нулю сумма полинома числителя и полинома знаменателя  передаточной функции разомкнутой  системы или приравненный нулю полином  знаменателя передаточной функции замкнутой системы являются характеристическим уравнением, соответствующим дифференциальному уравнению свободного движения в замкнутой системе.

     Корни характеристических уравнений систем могут быть либо вещественными, либо попарно комплексно сопряженными. Решение однородного уравнения выражается через корни характеристического уравнения и коэффициенты перед экспонентами, которые могут быть вычислены через вычеты:

усв(t) = Сn exp(pnt).                                               (4.1.11)

     Условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанного в отклонениях, должна стремиться к нулю, то есть затухать.

     

Рис. 4.1.3.

     Из  формулы (4.1.11) нетрудно вывести условие устойчивости линейных динамических систем: линейная система будет устойчива, если все вещественные корни и все вещественные части комплексных корней характеристического уравнения, соответствующего исходному дифференциальному уравнению свободного движения системы, будут отрицательными, что дает затухающие по экспоненте решения. Если имеются чисто мнимые корни, то в переходном процессе будут гармонические незатухающие компоненты.

     Каждому отрицательному вещественному корню ai соответствует экспоненциально затухающая во времени составляющая усв(t)i, каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует усв(t)i = const (рис. 4.1.3).

     

Рис. 4.1.4.

     Пара  комплексно сопряженных корней с отрицательной вещественной частью определяет затухающие колебания с частотой wi, при положительной вещественной части - расходящиеся колебания, при нулевой - незатухающие (рис. 4.1.4).

     

Рис . 4.1.5.

     Исходя  из расположения на комплексной плоскости, корни с отрицательными вещественными частями называются левыми, с положительными - правыми (рис. 4.1.5). Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю, а остальные левые, то система находится на границе апериодической устойчивости. Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости.

     Таким образом, исследование устойчивости системы сводится к определению знаков вещественных частей корней характеристического уравнения системы. Но решение уравнений четвертой и более высоких степеней может встречать затруднения. Поэтому применяются косвенные методы анализа устойчивости без определения корней характеристического уравнения, по определенным критериям устойчивости.

     Проверку факта отрицательности вещественных частей корней можно выполнять тремя способами:

     - вычислив корни непосредственно, с использованием готовых программ;

     - связав расположение корней с коэффициентами характеристического уравнения для последующего аналитического исследования;

     - судить об устойчивости по частотным характеристикам системы.

     Первые  два способа называют алгебраическими, последний - частотным. В инженерной практике необходимо иметь эффективные и удобные правила проверки устойчивости. Однако сам по себе критерий устойчивости не обязан быть необходимым и достаточным условием устойчивости системы.

     Алгебраические  критерии устойчивости.

     Необходимое условие устойчивости.  Если все корни характеристического уравнения левые (вещественные части всех корней отрицательны), то все коэффициенты уравнения имеют один знак, т.е. все значения an либо больше нуля, либо меньше нуля одновременно. Равенство коэффициентов нулю не допускается (граница устойчивости). Доказательство очень простое и заключается в разложении полинома на простейшие множители. Они могут быть вещественные или комплексно - сопряжённые. Объединим последние в пары и перемножим, при этом в скобках нет ни одного отрицательного числа, а, следовательно, знак всех членов характеристического уравнения будет определяться знаком коэффициента a0. В дальнейшем будем рассматривать только уравнения, где a0 > 0. В противном случае уравнение умножается на -1.

     Рассмотренное условие при порядке системы больше 2 является необходимым, но не достаточным условием, и применяется для отсеивания заведомо неустойчивых систем. Необходимые и достаточные условия дают алгебраические критерии Рауса и Гурвица.

     Критерий  Рауса. Используется в виде алгоритма, по которому заполняется специальная таблица с использованием коэффициентов характеристического уравнения:

     1) в первой строке записываются коэффициенты уравнения с четными индексами в порядке их возрастания;

     2) во второй строке – аналогично коэффициенты с нечетными индексами;

     3) остальные элементы таблицы определяется  по формуле: ck,i = ck+1,i-2 - ri ck+1, i-1, где ri = c1,i-2/c1,i-1, i ≥3 - номер строки, k - номер столбца.

     4) Число строк таблицы на единицу  больше порядка характеристического  уравнения.

ri i\k 1 2 3 4
- 1 c11 = a0 c21 = a2 c31 = a4 ...
- 2 c12 = a1 c22 = a3 c32 = a5 ...
r3 = c11/c12 3 c13 = c21-r3 c22 c23 = c31-r3 c32 c33 = c41-r3 c42 ...
r4 = c12/c13 4 c14 = c22-r4 c23 c24 = c32-r4 c33 c34 = c42-r4 c43 ...
... ... ... ... ... ...
 

 Чтобы система была устойчива, необходимо и достаточно, чтобы коэффициенты первого столбца таблицы Рауса c11, c12, c13,... были положительными. Если это не выполняется, то система неустойчива, а количество правых корней равно числу перемен знака в первом столбце.

     Достоинство - критерий прост в использовании  независимо от порядка характеристического уравнения. Он удобен для использования на ЭВМ. Его недостаток - малая наглядность, трудно судить о степени устойчивости системы, насколько далеко отстоит она от границы устойчивости.

     

Рис. 4.1.6.

     Критерий  Гурвица. Гурвиц предложил другой критерий устойчивости. Из коэффициентов характеристического уравнения строится определитель Гурвица D по алгоритму:

     1) по главной диагонали слева  направо выставляются все коэффициенты характеристического уравнения от a1 до an;

     2) от каждого элемента диагонали  вверх и вниз достраиваются  столбцы определителя так, чтобы индексы убывали сверху вниз;

     3) на место коэффициентов с индексами  меньше нуля или больше n ставятся  нули.

     Чтобы система была устойчива, необходимо и достаточно, чтобы все коэффициенты характеристического уравнения и все n главных диагональных миноров матрицы Гурвица были положительны. Число определителей Гурвица равно порядку характеристического уравнения п.

     Критерий  Гурвица применяют при n ≤ 5. При больших порядках возрастает число определителей, и процесс становится трудоемким. Недостаток критерия Гурвица - малая наглядность. Достоинство - удобен для реализации на ЭВМ.

4.2. ЧАСТОТНЫЕ  КРИТЕРИИ  УСТОЙЧИВОСТИ [7, 8, 11].

     Частотные методы исследования устойчивости основаны на связи расположения корней характеристического полинома (обозначим его функцией D(р) для любого типа систем) с годографом этого полинома на комплексной плоскости, т.е. с графиком комплексной функции D(jw) при изменении w от 0 до ∞. Это графоаналитические методы, позволяющие по виду частотных характеристик систем судить об их устойчивости. Их достоинство - в простой геометрической интерпретации, наглядности и в отсутствии ограничений на порядок дифференциального уравнения.

     Принцип аргумента. Запишем характеристический полином в виде

D(p) = a0 (p-p1) (p-p2)… (p-pn) = 0,

     Его корни:  pi = ai + jwi = |pi| exp(j arg(pi)),  где arg(pi) = arctg(wi/ai) + kp, |pi| - значения модулей корней.

     

Рис. 4.2.1.

     Каждый  корень можно изобразить вектором на комплексной плоскости (рис. 4.2.1а), тогда разность p - pi изобразится разностью векторов (рис. 4.2.1б), где p - любое число.

Информация о работе Устойчивость систем автоматического управления