Математики эпохи Возрождения

Автор: Пользователь скрыл имя, 17 Февраля 2013 в 17:06, реферат

Описание работы

XV и XVI столетия были временем больших перемен в экономике, политической и культурной жизни европейских стран. Бурный рост городов и развитие ремесел, а позднее и зарождение мануфактурного производства, подъем мировой торговли, вовлекавший в свою орбиту все более отдаленные районы постепенное размещение главных торговых путей из Средиземноморья к северу, завершившееся после падения Византии и великих географических открытий конца XV и начала XVI века, преобразили облик средневековой Европы. Почти повсеместно теперь выдвигаются на первый план города.

Содержание

Введение…………………………………………………………………2стр.
Никколо Тарталья………………………………………………….…..3стр.
Джероламо Кардано…………………………………………………...6стр.
Франсуа Виет…………………………………………………………..9стр.
Лука Пачиоли………………………………………………………...12стр.
Леонардо Да Винчи………………………………………………….14стр.
Николай Коперник………………………………………………….16стр.
Джордано Бруно……………………………………………..………17стр.
Галилео Галилей…………………………………………………….18стр.
Исаак Ньютон……………………………………………………….20стр.
Заключение………………………………………………………….23стр.
Список литературы………………

Работа содержит 1 файл

рефират мат.doc

— 145.00 Кб (Скачать)

 Ньютон создал теорию  абсолютных пространства и времени,  которая долгое время господствовала в науке. С таким пониманием пространства и времени связана его теория дальнодействия – мгновенной передачи действия от одного тела к другому на расстоянии, через пустое пространство без помощи материи. Эта теория, как и вся механистическая картина мира Ньютона, господствовали до начала ХХ века. Впервые их ограниченность обнаружили М.Фарадей и Дж. Максвелл, показав неприменимость подобных воззрений к электромагнитным явлениям. Однако специальная теория относительности не отбросила совсем закономерностей, установленных классической механикой Ньютона, а лишь уточнила и дополнила ее для случая движения со скоростями, соизмеримыми со скоростью света в вакууме.        

 Велик вклад Ньютона и в оптику. В 1666 году при помощи трехгранной стеклянной призмы он разложил белый свет на семь цветов спектра, открыв явление дисперсии и хроматическую аберрацию. Пытаясь избежать аберрации в телескопах, Ньютон сконструировал телескоп-рефлектор, где вместо линзы использовал вогнутое сферическое пространство. Исследуя интерференцию и дифракцию света,  ученый открыл так называемые «кольца Ньютона», установив закономерности в их размещении, и высказал идею о периодичности светового процесса. Открытия в этой области  изложены в работе «Оптика».       

 Научная деятельность Ньютона сыграла исключительно важную роль в истории развития физики. По словам А.Эйнштейна, «Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности, оказал своими трудами глубокое и сильное влияние на все мировоззрение в целом».

Из работы «математические начала натуральной философии (1687 г.)       

 Ньютон формулирует  четыре методологических правила,  которым должно подчиняться научное исследование. Ставится вопрос «как искать», а не «что искать».

1.   Первое методологическое правило обосновывает постулат простоты природы. «Природа проста и не роскошествует излишними причинами вещей…Не следует допускать причин больше, чем достаточно для объяснения видимых природных явлений».

2.   Постулат о единообразии природы. «Одни и те же явления мы должны, насколько возможно, объяснять теми же причинами».

3.   Природа проста и единообразна. На основе чувственного опыта можно установить основные свойства тел, такие как твердость, непроницаемость, движение. Все эти свойства можно вывести из ощущений с использованием индуктивного метода. Индукция, уверен Ньютон, единственная действенная процедура для формирования научных суждений. Это закреплено в четвертом правиле.

4.   «В экспериментальной философии суждения, выведенные путем общей индукции, следует рассматривать как истинные или очень близкие к истине, несмотря на противоположные гипотезы, которые могут быть вообразимы…»

О законе всемирного тяготения: «По правде говоря, мне еще не удалось вывести причину этих свойств тяготения, гипотез же я не измышляю». То есть, из наблюдаемых фактов невозможно определить сущность сил тяготения. Закон всемирного тяготения выводится индуктивно и вопрос, почему этот закон именно такой, а не иной, не имеет ответа, опирающегося на факты. Прибегать же к гипотезам, не опирающимся на чувственно наблюдаемые явления, означает отрываться от реальности. Физика Ньютона не доискивается до сути тяготения, а довольствуется тем, что оно существует и объясняет движение, как небесных тел, так и земных объектов. Вопрос о сущности вещей выносится Ньютоном за пределы «экспериментальной философии». Гипотеза должна быть обоснована и подтверждена наблюдаемыми фактами и экспериментами. Тем более теория. Не опирающееся же на наблюдения и эксперименты размышление не является научным.

 

 

 

 

Заключение

В 16 веке европейские  математики сумели, наконец, сравниться в мудрости с древними греками  и превзойти их там, где успехи эллинов были не велики: в решении  уравнений. Такой прорыв в неведомое  стал итогом долгой культурной революции. Она началась в 14 веке, когда в Италии появились первые великие поэты Нового времени: Данте Алигьери (1265-1321) и Франческо Петрарка . Подобно Гомеру, они объявили своим современникам: пришла пора строить новый мир, равняясь на античные образцы и стараясь их превзойти!

Одновременно с такими спорами и мучениями первопроходцев-теоретиков, привычная арифметика целых чисел  и десятичных дробей уверенно проникала  в быт новых европейцев Учебники практической геометрии и арифметики издавались тиражами в сотни экземпляров на живых языках: итальянском, французском, немецком, английском. Картографы составляли новые варианты глобусов с новыми континентами и океанами и старались изобразить земную поверхность на плоской карте с наименьшими искажениями. Особенных успехов в этой прикладной геометрии добился фламандец Герард Кремер (по латыни его называли Меркатор). В 1559 году он предложил цилиндрическую проекцию глобуса на плоскость. Она удобна тем, что сильно искажает лишь те земли, которые (как Гренландия) лежат вблизи земных полюсов и не очень важны для мореходов.

Некоторое время Никколо  Тарталья был почти непобедим  в математических соревнованиях; сравниться с ним мог только Джероламо  Кардано из Павии.

Мы не знаем, сколь  много нового рассказал Тарталья Кардано. Но мастеру хватило этой информации для полного решения кубического уравнения; в итоге Кардано сравнялся с Тартальей в алгебраическом мастерстве.

Решение уравнений-многочленов  степеней 3 и 4 стало крупным успехом  новой европейской математики. Но за всякий успех приходится платить. Платой за удачи Кардано и Феррари оказалось появление МНИМЫХ чисел. Так были названы квадратные корни из отрицательных чисел. Они неизбежно возникают при решении кубического уравнения по способу Кардано, даже если такое уравнение имеет три действительных корня.

 

 

 

 

 

 

Список литературы

Гиндикин С.Г. Рассказы о физиках и математиках. М.: Наука, 1981.

Квант. 1976. №9.

Никифоровский В.А. В мире уравнений. М.: Наука, 1987.

Никифоровский В.А., Фрейман Л.С. Рождение новой математики. М.: Наука, 1976.

 


Информация о работе Математики эпохи Возрождения