Первообразные для функции

Автор: Пользователь скрыл имя, 27 Декабря 2010 в 15:10, реферат

Описание работы

Совокупность всех первообразных для функции f(x) называется неопределенным интегралом от функции f(x).
Обозначения: ∫ f(x) dx (читается так: «интеграл эф от икс дэ икс»)
Таким образом, если F(x)- какая-нибудь первообразная для функции f(x), то
∫ f(x)dx= F(x)+ С
(в правой части последнего равенства более правильно было бы написать {F(x)+С}, поскольку речь идет о множестве всех первообразных, но фигурные скобки, обозначающие множество, обычно не пишут).

Работа содержит 1 файл

матем.docx

— 156.73 Кб (Скачать)

Введение

Совокупность  всех первообразных для функции  f(x) называется неопределенным интегралом от функции f(x).

Обозначения: ∫ f(x) dx (читается так: «интеграл эф от икс дэ икс»)

Таким образом, если F(x)- какая-нибудь первообразная для функции f(x), то

∫ f(x)dx= F(x)+ С

(в правой  части последнего равенства более  правильно было бы написать  {F(x)+С}, поскольку речь идет о множестве всех первообразных, но фигурные скобки, обозначающие множество, обычно не пишут).

Знак ∫ называется интегралом, функция f(x) – подынтегральной функцией, а f(x) dx- подынтегральным выражением.

Операция нахождения неопределенного интеграла от данной функции называется интегрированием  этой функции.

Интегрирование- операция, обратная операции дифференцирования ( т.е. операции, заключающейся в нахождении производной от данной функции).У  всякой непрерывной на данном интервале  функции существует неопределенный интеграл.

 

1.Первообразная и неопределенный интеграл

  Рассмотрим  задачу: Дана функция f(x);требуется найти  такую функцию F(x),производная которой  равна f(x),т.е. F′ (x)= f(x).

  Определение:1.Функция F(x) называется первообразной от функции f(x) на отрезке [a,b], если во всех точках этого отрезка выполняется равенство F′ (x)= f(x).

  Пример. Найти первообразную от функции f(x)=x2.Из определения первообразной  следует, что функция F(x)=х3/3 является первообразной, так как (х3/3)′= x2 .

  Легко видеть, что если для данной функции f(x) существует первообразная , то эта  первообразная не является единственной. Так, в предыдущем примере можно  было взять в качестве первообразных  следующие функции:

   , или вообще    (где С- произвольная постоянная), так как  . С другой стороны, можно доказать, что функциями вида  исчерпываются все первообразные от функции x2 . Это вытекает из следующей теоремы.

  Теорема. Если F1 (x) и F2 (х)- две первообразные  от функции f(x) на отрезке [a,b], то разность между ними равна постоянному  числу.

  Доказательство. В силу определения первообразной  имеем         

   F1 ′(х)= f(x), F2 ′(х)= f(x)                               (1)

  При любом значении х на отрезке [a,b].

  Обозначим          

   F1 (х)- F2 (х) =φ(х).                                   (2)  

  Тогда на основании равенств (1) будет F′1 (х)- F′2 (х)= f(x)- f(x)=0 или φ′(х)=[ F′1 (х)- F′2 (х)]′≡0 при любом значении х на отрезке [a,b]. Но из равенства φ′(х)=0 следует, что φ(х) есть постоянная. Действительно, применим теорему Лагранжа к функции  φ(х), которая, очевидно, непрерывна и  дифференцируема на отрезке [a,b]. Какова бы ни была точка х на отрезке [a,b], мы имеем в силу теоремы Лагранжа φ(х)- φ(а)= (х-а) φ′(z), где а < z < x.Так как φ′(z)=0, то φ(х)- φ(а)=0, или φ(х)= φ(а).                                                           (3)

  Таким образом, функция φ(х) в любой точке  х отрезка [a,b] сохраняет значение φ(а), а это значит, что функция  φ(х) является постоянной на отрезке [a,b]. Обозначая постоянную φ(а) через  С, из равенств (2) и (3) получаем F1 (х)- F2 (х) = С.

  Из  доказанной теоремы следует, что  если для данной функции f(x) найдена  какая- нибудь одна первообразная F(x), то любая другая первообразная для f(x) имеет вид F(x)+ С, где С = const/

  Определение 2. Если функция F(x) является первообразной  для f(x), то выражение F(x)+ С называется неопределенным интегралом от функции f(x) и обозначается ∫f(x)dx.Таким образом  по определению, ∫ f(x)dx= F(x)+ С, если F′ (x)= f(x). При этом функцию f(x) называют подынтегральной  функцией, f(x)dx- подынтегральным выражением, знак ∫- знаком интеграла.

  Таким образом, неопределенный интеграл представляет собой семейство функций y= F(x)+ С.

  С геометрической точки зрения неопределенный интеграл представляет совокупность (семейство) кривых, каждая из которых получается путем сдвига одной из кривых параллельно  самой себе вверх или вниз, т. е. вдоль оси Оу.

  Естественно возникает вопрос: для всякой ли функции f(x) существуют первообразные( а значит, и неопределенный интеграл)? Оказывается, что на для всякой. Заметим, однако, без доказательства, что  если функция f(x) непрерывна на отрезке [a,b],то для этой функции существует первообразная ( а значит, и неопределенный интеграл).

  Нахождение  первообразной для данной функции f(x) называется интегрированием функции f(x).

  Заметим следующее: если производная от элементарной функции всегда является элементарной функцией, то первообразная от элементарной функции может оказаться и  не представимой с помощью конечного  числа элементарных функций. Из определения 2 следует:

  1.Производная  от неопределенного интеграла  равна подынтегральной функции,  т.е.если F′ (x)= f(x), то и 

  (∫  f(x)dx)′= (F(x)+C)′=f(x).                                  (4)

  Последнее равенство нужно понимать в том  смысле, что производная от любой  первообразной равна подынтегральной  функции.

  2. Дифференциал от неопределенного  интеграла равен подынтегральному  выражению:        

     d(∫f(x)dx)= f(x)dx.                                          (5) 

  Это получается на основании формулы (4).

  3. Неопределенного интеграл от  дифференциала некоторой функции  равен этой функции плюс произвольная  постоянная:       

     ∫dF(x)= F(x)+C.

  Справедливость  последнего равенства легко проверить  дифференцированием (дифференциалы  от обеих частей равенства равны dF(x)). 
 
 

 

2. Таблица  интегралов.

  Прежде  чем приступить к изложению методов  интегрирования, приведем таблицу интегралов от простейших функций.

  1. = .(Здесь и в последующих формулах под С понимается  

  произвольная  постоянная.).

  2. = .

  3. =

  4. =

  5. = .

  6. = .

  7. = .

  8. = .

  9. = .

  10. =

  11. = .

  11′.  = .

  12. = .

  13. = .

  13′ = .

  14. = .

  Справедливость  формул 7,8,11′,12,13′и 14 легко устанавливается  с помощью дифференцирования.

  В случае формулы 7 имеем  ′= ,

  следовательно, .

  В случае формулы 8                

    ′= ,

  следовательно, = .

  В случае формулы 12

   ′= ,

  следовательно, = .

  В случае формулы 14

  

  следовательно,  = .

  3). Некоторые свойства неопределенного  интеграла

  Теорема 1.Неопределенный интеграл от алгебраической суммы двух или нескольких функций  равен алгебраической сумме их интегралов:   

                                        (1)

  Из  доказательства найдем производные  от левой и правой частей этого  равенства. На основании равенства (4) пункта №1 находим

  

  Таким образом, производные от левой и  правой частей равенства (1) равны между  собой, т. е. производная от любой  первообразной, стоящая в левой  части, равняется производной от любой функции, стоящей в правой части равенства. Следовательно  по теореме из пункта №1 любая функция, стоящая в левой части равенства (1), отличается от любой функции, стоящей  в правой части равенства(1), на постоянное слагаемое. В этом смысле и нужно  понимать равенство (1).

   Теорема 2. Постоянный множитель можно  выносить за знак интеграла, т. е. если a=const, то                              

                       (2)

   
  

  Для доказательства равенства (2) найдем производные  от левой и правой его частей:

        

  Производные от правой и левой частей равны, следовательно, как и в равенстве (1), разность двух любых функций, стоящих слева  и справа, есть постоянная. В этом смысле и следует понимать равенство (2).

  При вычислении неопределенных интегралов бывает полезно иметь в виду следующие  правила. 
 
 

  1).Если   

  

  то 

                                                  (3)

  Действительно, дифференцируя левую и правую части равенства (3) получим 

     Производные от правой и левой частей равны, что и требовалось доказать.

  2). Если

  

  то  

                                                        (4)

  3). Если

  

  то

   .                                                  (5)

  Равенства (4) и (5) доказываются дифференцированием правой и левой частей равенств.

  Пример 1.

  

  =

  Пример 2.   

   

   =

  =

  Пример 3.

   .

  Пример 4.

  

  Пример 5.

  

  4)Интегрирование  методом замены переменой или  способом подстановки

  Пусть требуется найти интеграл , причем непосредственно подобрать первообразную для f(x) мы не сможем , но нам известно, что она существует.

  Сделаем замену переменной в подынтегральном  выражении, положив         

         x=φ(t),                                                 (1)

  где φ(t)-непрерывная функция с непрерывной  производной, имеющая обратную функцию. Тогда dx= φ′(t)dt;докажем, что в этом случае имеет место следующее  равенство:            

                                                (2)

  Здесь подразумевается, что после интегрирования в правой части равенства вместо t будет подставлено его выражение  через х на основании равенства (1).

  Для того чтобы установить, что выражения, стоящие справа и слева, одинаковы  в указанном выше смысле, нужно  доказать, что их производные по х равны между собой . Находим  производную от левой части : Правую часть равенства (2) будем дифференцировать по х как сложную функцию, где t-промежуточный аргумент. Зависимость t от х выражается равенством (1), при этом  и по правилу дифференцирования обратной функции .

Информация о работе Первообразные для функции