Aнтиоксидантная система и ее функционирование в организме человека

Автор: Пользователь скрыл имя, 25 Сентября 2011 в 20:12, реферат

Описание работы

Источники активных форм кислорода (АФК) в организме. В организме имеются ферменты, которые катализируют прямые реакции между своими субстратами и O2. Вклад таких реакций в общее потребление кислорода в организме невелик.

Работа содержит 1 файл

Aнтиоксидантная система и ее функционирование в организме человека.docx

— 45.96 Кб (Скачать)

Селен представляет собой компонент глутатионпероксидазы и является выраженным синергистом  витаминов антиоксидантной группы. Этот микроэлемент — важная составная часть сбалансированного питания (в почвах Украины имеется его дефицит). Необходимые суточные добавки к пище селена составляют около 70 мкг для мужчин и 50 — для женщин (0,87 мкг/кг). В крови часть селена связывается с белками, концентрация его в тканях органов значительно различается. Об уровне селена в организме можно судить по активности глутатионпероксидазы, особенно это касается лиц с низким потреблением селена. Из организма селен удаляется в основном путем экскреции с мочой. Токсичность селена весьма низкая: клинические проявления наблюдаются при длительном приеме 1 мг/сут и более. Молекулярные механизмы развития токсичности неизвестны. От содержания селена в организме зависит функционирование цитохрома Р-450 в эндоплазматической сети клеток печени, а также транспорт электронов в митохондриях. Дефицит его в организме сопровождается развитием алиментарной мышечной дистрофии, эндемической селенодефицитной кардиомиопатии. Сниженное содержание этого микроэлемента обнаруживают у больных инфарктом миокарда, миокардиодистрофиями, дилатационной кардиомиопатией. Применение селена положительно влияет на процессы регенерации в сердечной мышце после перенесенного инфаркта миокарда. Он стимулирует иммуногенез и, в частности, продукцию антител, участвует как антиоксидант в окислительно-восстановительных процессах, дыхании клетки, синтезе специфических белков. Дефицит его у животных сопровождается фиброзом, дистрофическими процессами в поджелудочной железе, некрозами в печени, эозинофильным энтеритом, который протекает на фоне недостаточности витамина Е. У животных наблюдается задержка роста, развития, нарушается репродуктивная функция. Имеется отрицательная обратная корреляция между потреблением селена, его уровнем и смертностью от злокачественных заболеваний легких, молочной железы, кишечника, яичников. Он оказывает и непосредственное повреждающее действие на злокачественные клетки. Кроме антиканцерогенного действия селен имеет и антимутагенный эффект, противодействует токсическому влиянию тяжелых металлов (возможно за счет образования нерастворимых комплексов, восстановления дисульфидных связей в белках в SH-группы). Важнейшей ролью селена является его вхождение в состав глутатионпероксидазы — фермента предохраняющего клетки от токсического действия перекисных радикалов. Имеется связь между селеном и витамином Е — они влияют на разные этапы образования органических перекисей: токоферолы подавляют (предупреждают) перекисное окисление полиненасыщенных жирных кислот, а содержащая селен глутатионпероксидаза разрушает уже образовавшиеся перекиси липидов, перекись водорода. Глутатионпероксидаза, не содержащая селен, — глутатион-S-трансфераза — разрушает только перекись водорода (как и каталаза). При достаточном поступлении в организм витамина Е проявления дефицита селена значительно нивелируются. Наибольшее количество селена содержится в белках с высоким содержанием цистина: образуются трисульфиды, которые подобно сульфгидрильным группам мембранных белков, регулируют стабильность и проницаемость мембран. При дефиците селена и снижении активности глутатионпероксидазы повышается гемолиз эритроцитов вследствие действия перекиси водорода и липоперекисей. На активность глутатионпероксидазы влияет уровень содержания витаминов С и А, которые способствуют усвоению селена, его транспорту и утилизации. Селен также принимает участие в фотохимических реакциях, связанных с функцией зрения. Витамин Е предупреждает окисление селена, способствует его сохранению. Добавка селена при Е-дефицитном рационе тормозит накопление липоперекисей, ликвидирует или предупреждает симптомы Е-витаминной недостаточности. Восстановленный глутатион и глутатионпероксидаза превращают липоперекиси в менее токсичные оксикислоты и этим предупреждают повреждение биоструктур. Пополнение фонда глутатиона происходит за счет аминокислот, которые содержат серу.

2.2. Жирорастворимые  антиоксиданты. Витамины Е (a-токоферол), А (ретинол) содержатся и обезвреживают свободные радикалы в жировом слое клеточных мембран. Из токоферолов биологически наиболее активным является a-токоферол. Он, как и витамин С, — донатор водородных ионов и называется «жертвоприносящим» антиоксидантом (B. Halliwel, J.M.C. Gutteridge, 1985), ограничителем свободнорадикальных реакций. Альфа-токоферол превращается в радикал, который может дальше реагировать с другим перекисным радикалом и в результате образуется нерадикальное соединение. Он стабилизирует мембранные структуры, в которых совершаются процессы свободнорадикального окисления, угнетает образование липоперекисей, разрывает цепь свободнорадикального окисления путем нейтрализации свободных радикалов в момент их образования. Молекулы витамина Е локализуются во внутренних мембранах митохондрий. Они защищают их, а также лизосомы от повреждающего действия перекисей, поддерживают функциональную целостность внешней цитоплазматической мембраны клеток и являются основным фактором резистентности эритроцитов к гемолитическим ядам, важнейшим элементом защиты при действии различных повреждающих факторов, патологических состояниях. Альфа-токоферол, располагающийся в липопротеиновом слое клеточных мембран и защищающий клеточные мембраны от перекисного окисления, является главным жирорастворимым антиоксидантом в организме (B. Halliwel, J.M.C. Gutteridge, 1985). Он эффективно прерывает цепные свободнорадикальные реакции в процессе переокисления ненасыщенных жирных кислот в мембранах, предупреждает атерогенные изменения ЛПНП (B. Frei, J.M. Gaziano, 1993). Являясь донатором водородных атомов витамин Е может инициировать цепную радикальную реакцию пероксидации липидов (W.A. Pryor, 1994). Его радикал незначительно активен в отношении свободных жирных кислот. In vitro аскорбиновая кислота восстанавливает окисленную форму токоферола. Наличие подобного эффекта (взаимодействия между этими витаминами) in vivo окончательно не подтверждено (G.W. Burton et al., 1990). Альфа-токоферол играет важную роль в обмене селена — составной части глутатионпероксидазы, которая защищает мембраны от пероксидных радикалов. Предотвращая аутоокисление липидов мембран, a-токоферол снижает потребность в глутатионпероксидазе. Витамин откладывается в жировой ткани, мышцах, поджелудочной железе, других тканях. Существует прямая связь между витамином Е и тканевым дыханием и обратная связь со степенью окисления липидов.

Витамин А и каротиноиды. Витамин А  необходим для образования серосодержащих биомолекул, связывания и обезвреживания эндогенных веществ и ксенобиотиков. Как антиоксидант он тормозит превращение  сульфгидрильных групп в дисульфидные. Может участвовать в окислительно-восстановительных  реакциях благодаря наличию двойных  связей в молекуле, способности образовывать перекиси, которые повышают скорость окисления других соединений. Принимает  участие в синтезе гликопротеинов, воздействует на метаболизм мембранных фосфолипидов. Антиоксидантное действие витамина А объясняется участием в обмене тиоловых соединений, нормализацией  функционально-структурных свойств  мембран. Он препятствует канцерогенному действию бензпирена и других веществ, что обусловлено способностью тормозить  микросомальное окисление этих соединений. С антиоксидантным торможением  превращения ксенобиотиков связаны  и антимутагенные свойства витамина А. Окисленные промежуточные продукты b-каротина и витамина А могут  иметь прооксидантные свойства. Установлено (G.W. Burton, K.U. Ingold, 1984), что b-каротин наибольшую антиоксидантную активность проявляет  при низком парциальном давлении в крови, хотя в целом как антиоксидант он уступает b-токоферолу. При высоком  содержании кислорода b-каротин может  проявлять прооксидантную активность (G.W. Burton, K.U. Ingold, 1984). b-Каротин расходуется  при обезвреживании оксидированных липопротеидов низкой плотности (H. Esterbauer et al., 1992; S.M. Lynch et al., 1994), реагирует  с синглетным кислородом (G.W. Burton, K.U. Ingold, 1984). Он может реагировать с  перекисными радикалами в так  называемой добавочной реакции без  донации гидрогенного атома (G.W. Burton, K.U. Ingold, 1984; D.C. Liebrer, 1993). Промежуточные  радикалы дериватов b-каротина могут  взаимодействовать с O2, образуя перекисные радикалы (D.C. Liebrer, 1993), которые могут в дальнейшем инициировать цепную реакцию пероксидации липидов.

Соотношение концентраций в организме b-каротина и a-токоферола составляет около 1:20 (B. Frei, J.M. Gaziano, 1993). b-Каротин расходуется в организме после использования запасов b-токоферола (S.M. Lynch et al., 1994). Его роль в атерогенезе и канцерогенезе как биоантиоксиданта в настоящее время устанавливается. Требует уточнения и роль b-каротина и других каротиноидов в физиологических условиях как «уборщиков» радикалов. Имеются сомнения (B. Frei, 1994), что свое антиатерогенное действие витамин А реализует через антиоксидантную активность. b-Каротин, другие каротиноиды как антиоксиданты действуют совместно с витаминами Е и С. Витамины С, Е, b-каротин составляют так называемую антиоксидантную витаминную группу. Их поступление в организм снижает риск развития рака, сердечно-сосудистых заболеваний, катаракты. Витамин А — естественный пищевой продукт, который помимо антиоксидантной роли необходим в организме для поддержания целостности мембранных структур, роста, развития. Витамин А влияет на процессы клеточной дифференциации, пролиферации, репродуктивные процессы, от уровня его содержания в организме зависит состояние иммунной системы, зрение. Предшественниками ретинола являются каротиноиды, которые превращаются в витамин А в тонкой кишке. Каротиноиды более эффективно, чем витамин А, уничтожают свободные радикалы, в т.ч. синглетный кислород, который может привести к развитию неопластического процесса. Каротиноиды даже при многолетнем применении и в достаточно высоких дозах не проявляют токсичность.

Имеется тесная связь между витамином  А и другими антиоксидантами. Так, высокие дозы витамина А уменьшают  содержание запасов в организме  аскорбиновой кислоты. У животных витамин  А может уменьшать активность витамина Е и понижать его уровень  в плазме и печени (у человека это не подтверждено). Витамин Е  предохраняет клетки от разрушения мембран, которое наблюдается при гипервитаминозе  А, уменьшает тератогенный эффект. Витамин  А уменьшает отрицательные эффекты  токсичности витамина D у животных (в том числе гиперкальциемию). Может наблюдаться антагонизм между  витаминами А и К: развивается  гипопротромбинемия у людей с  гипервитаминозом А. Недостаток в организме  белка повышает риск развития гипервитаминоза. С высоким уровнем витамина А  в сыворотке крови может быть связана гиперлипопротеинемия. Негативно  влияет на обмен витамина А в организме (потребление, депонирование) недостаток железа и цинка.

Из  всех каротиноидов b-каротин обладает наибольшей биохимической активностью. Фактически ингибитором свободнорадикального окисления, в т.ч. синглетного кислорода, является не ретинол, а b-каротин. Он, помимо выраженного антиоксидантного эффекта, принимает участие в процессах  деления иммунокомпетентных клеток, синтезе иммуноглобулинов, в том  числе секреторного иммуноглобулина  А, интерферона, лизоцима и других факторов специфической и неспецифической  защиты от инфекций, активирует ферменты лизосом в фагоцитах, что необходимо для переваривания патогенных микроорганизмов.

Убихинон (коэнзим Q). Он необходим для течения  в клетках процессов окисления  и локализован преимущественно  в мембранах митохондрий. Принимает  участие в транспорте электронов по дыхательной цепи на участке между  флавиновыми ферментами и цитохромами. Как и витамин Е, он является ингибитором  радикалов фенольного типа, непосредственно  реагирует с перекисными радикалами, уменьшает их концентрацию, стабилизирует  мембраны. Витамин Е осуществляет первичную защиту от перекисного  окисления, а убихиноны присоединяются к процессу после значительного  использования витамина.

Эстрогены. Благодаря липидофильности стероидные гормоны имеют мембраннотропные свойства. Из стероидных гормонов антиоксидантными свойствами обладают эстрогены. Активность свободнорадикального окисления повышается в период циклов, когда концентрация эстрогенов низкая и наоборот. Эстрогены  регулируют микросомальное окисление, поддерживая активность монооксигеназной системы. При патологических состояниях, которые сопровождаются чрезмерным усилением процессов свободнорадикального окисления, эстрогены предупреждают  нарушения микросомального окисления, противодействуют повреждению биомембран.

2.3. Водорастворимые  антиоксиданты действуют  во внутриклеточной  и межклеточной  жидкости. Такой важный водорастворимый антиоксидант, как аскорбиновая кислота в организме человека не синтезируется, а поступает с пищевыми продуктами (преимущественно овощами и фруктами), в т.ч. в виде окисленной формы — дегидроаскорбиновой кислоты. До сих пор не определены все ферменты, в состав простетических групп которых входит витамин С. Одним из основных свойств витамина является способность к окислительно-восстановительным превращениям. Аскорбиновая кислота способна окисляться в дегидроаскорбиновую кислоту и, таким образом, вместе с ней она представляет окислительно-восстановительную систему, теряющую и присоединяющую электроны и протоны. При этом витаминная активность не снижается (менее стойкая и теряет биологическую активность дегидроаскорбиновая кислота). Как важный компонент биологической антиоксидантной системы витамин С взаимосвязан с глутатионом и токоферолом. Он принимает активное участие в микросомальном окислении эндогенных и чужеродных веществ, стимулирует активность цитохромного звена, процессы гидроксилирования (играет роль восстановителя). От обеспеченности аскорбиновой кислотой зависит активность цитохрома Р-450, фагоцитарная активность нейтрофилов и макрофагов, их антимикробные свойства. Значительную защитную роль как антиоксидант витамин С играет при токсическом действии различных соединений. Аскорбиновая кислота является мощным антиоксидантом, синергистом b-каротина и токоферола. Дефицит аскорбиновой кислоты в организме, помимо снижения антиоксидантной защиты, сопровождается нарушением синтеза коллагена. Аскорбиновая кислота участвует в выработке энергии, необходимой для синтеза интерферона и других цитокинов. Всасываясь в кровь, аскорбиновая кислота быстро попадает в лейкоциты, усиливает их способность к хемотаксису (R. Anderson, 1981; W.R. Beisel, 1982; R.S. Panush et al., 1982; R. Anderson et al., 1987).

Интенсивнее всего нейтрофилы поглощают витамин  С во время «дыхательного взрыва», необходимого для биосинтеза бактерицидных  свободнорадикальных субстанций (R. Moser, F. Weber, 1983). После активации фагоцитов  содержание в них аскорбиновой кислоты  падает (H. Нemilla et al., 1985; H. Oberritter et al., 1986). Обогащенные аскорбиновой кислотой нейтрофилы усиливают свою способность  распознавать и уничтожать (чаще путем  фагоцитоза) предраковые клетки, бактериальные, вирусные и другие чужеродные агенты. В норме концентрация витамина С  в нейтрофилах в 150 раз выше, чем в плазме (R. Anderson, 1981; R.M. Evans et al., 1982; R. Moser, F. Weber, 1983). Дефицит витамина С сопровождается снижением хемотаксической и бактерицидной активности лимфоцитов (P.G. Shilotry, 1977; R. Anderson et al., 1987), добавки аскорбиновой кислоты усиливают пролиферацию лимфоцитов (R. Anderson, 1981; R.S. Panush, J.C. Delafuente, 1985). Аскорбиновая кислота оказывает защитное действие по отношению к продуцируемой в легких a-1-протеазе (свободные радикалы, вырабатывающиеся во время «дыхательного взрыва», угнетают фермент) (A. Theron, R. Anderson, 1985). Добавки витамина С улучшают иммунные реакции за счет поддержания уровня содержания витамина Е в крови и тканях (витамин Е также является выраженным стимулятором иммунной системы (A. Bendich et al., 1983). Усиление пролиферации лимфоцитов наиболее выражено при одновременном назначении витаминов С и Е. Дополнительное введение витамина С стабилизирует содержание витамина Е в плазме, тканях. И, наоборот, дефицит витамина С сопровождается снижением содержания витамина Е в тканях и плазме. Витамин С защищает противоокислительную активность витамина Е (A. Bendich et al., 1986), представляет собой первую линию защиты в организме от действия различных свободных радикалов и других окислителей (B. Frei et al., 1988). Он ингибирует перекисное окисление липидов (хотя основную роль в этом играет a-токоферол), нейтрализует окислители, поступающие с загрязненным воздухом (NO, свободные радикалы сигаретного дыма), редуцирует канцерогенные нитроамины. Аскорбиновая кислота предотвращает пероксидацию холестерола ЛПНП (K.L. Retsky et al., 1993) и тем самым препятствует прогрессированию атеросклероза. Смесь аскорбиновой кислоты с ионами Аu или Сu in vitro может инициировать свободнорадикальные процессы, но в организме это не происходит так, как названные ионы металлов связаны белками. Хотя, по мнению B. Halliwell (1984), локальная реализация этого эффекта в организме может иметь место.

Аскорбиновая  кислота является кофактором для  ряда монооксигеназ (гидроксилирование  пролина, катаболизм тирозина).

Соединения, которые содержат серу. Важным звеном антиокислительной системы являются биомолекулы, которые содержат сульфгидрильные  группы. К ним относятся основные аминокислоты — цистеин, цистин, метионин. Они входят в состав белков, активных центров ферментов, ряда гормонов (инсулин, окситоцин), служат предшественниками глутатиона, коэнзима А. Основной мобильный фонд сульфгидрильных групп представляет собой глутатион (трипептид Glu-Cys-Glu), который содержится почти во всех клетках. Его антиоксидантное действие катализируют глутатионпероксидаза, глутатионредуктаза, глутатион-S-трансфераза. Глутатионпероксидаза содержит селен и играет основную роль в инактивации липидных гидроперекисных соединений. Глутатионредуктаза поддерживает достаточный уровень активного глутатиона путем восстановления его дисульфидной формы. Восстановленный глутатион осуществляет детоксикацию перекиси водорода (H2O2) и гидроперекисей, которые возникают при реакции активных форм кислорода (АФК) с полиненасыщенными жирными кислотами мембран. Основной функцией глутатион-S-трансферазы (функционирует в гепатоцитах) является детоксикация ряда соединений путем переноса на них атомов серы с последующим образованием меркаптидов (соединений серы с металлами), глутатионпроизводных чужеродных веществ.

Информация о работе Aнтиоксидантная система и ее функционирование в организме человека