Металлические проводниковые материалы

Автор: Пользователь скрыл имя, 09 Октября 2012 в 20:24, курсовая работа

Описание работы

В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. Важнейшими практически применяемыми в электротехнике твердыми пр оводниковыми материалами являются металлы и их сплавы.
Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление r при нормальной температуре не более 0,05 мкОм×м, и сплавы высокого сопротивления, имеющие r при нормальной температуре не менее 0,3 мкОм×м. Металлы высокой проводимости используются для проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления применяются для изготовления резисторов, электронагревательных приборов, нитей ламп накаливания и т. п.

Содержание

Введение
Природа проводимости ………………………………………………….5
Свойства проводников …………………………………………………..8
Классификация проводниковых материалов …………………………..15
Материалы высокой проводимости …………………………………15
Материалы с высоким удельным сопротивлением для
резисторов и точных приборов .………………………………………...24
Жаростойкие материалы ……………………………………………..24
Контактные материалы ………………………………………………25
Сверхпроводники …………………………………………………….26
Криопроводники ……………………………………………………...43
Заключение ……………………………………………………………………...44
Список литературы ……………………………………………………………..46

Работа содержит 1 файл

Курсовой Материаловедение.doc

— 404.50 Кб (Скачать)

 

gT/g = LoT  (2.7)

 

где Т —термодинамическая температура, К; Lo —число Лоренца, равное

 

Lo=(p2k2)/(3e2)    (2.8)

 

Подставляя в формулу (2.8) значения постоянной Больцмана k=1,38×1023 Дж/К и заряда электрона е = 1,6×10-19 Кл, получаем Lo = 2,45×10-8 B2K2.

Термоэлектродвижущая сила. При соприкосновении двух различных металлических проводников между ними возникает контактная разность потенциалов. Причина появления этой разности потенциалов заключается в различии значений работы выхода электронов из различных металлов, а также в том, что концентрация электронов, а, следовательно, и давление электронного газа у разных металлов и сплавов могут быть неодинаковыми. Из электронной теории металлов следует, что контактная разность потенциалов между металлами А и В равна

 

UAB=UB - UA + (kT/e) ln (n0A/n0B)  (2.9)

 

где UA и UB - потенциалы соприкасающихся металлов; n0A и n0B — концентрации электронов в металлах А и В; k — постоянная Больцмана; e —абсолютная величина заряда электрона.

Если температуры  «спаев» одинаковы, то сумма разности потенциалов в замкнутой цепи равна нулю. Иначе обстоит дело, когда один из спаев имеет температуру T1, а другой — температуру Т2 (рисунок 3).

 

Рисунок 2.2. Схема термопары

 

В этом случае между спаями возникает термо – ЭДС, равная

U = (k/e) (T1 - T2) ln (n0A/n0B)  (2.10)

 

Что можно записать в виде

 

U = y (T1 – T2)   (2.11)

 

где y — постоянный для данной пары проводников коэффициент термо-ЭДС, т.е. термо-ЭДС должна быть пропорциональна разности температур спаев.

Температурный коэффициент линейного расширения проводников. Этот коэффициент, интересен не только при рассмотрении работы различных сопряженных материалов в той или иной конструкции (возможность растрескивания или нарушения вакуум-плотного соединения со стеклами, керамикой при изменении температуры и т.п.). Он необходим также и для расчета температурного коэффициента электрического сопротивления провода

 

TKR = aR = ar - al (2.12).

 

 

 

3. Классификация проводниковых материалов

 

Общепринятая классификация  проводниковых материалов отсутствует. Будем рассматривать следующие группы проводниковых материалов:

- материалы высокой проводимости;

- материалы с высоким удельным сопротивлением для резисторов и точных приборов;

- жаростойкие материалы;

- контактные материалы;

- сверхпроводники и криопроводники.

 

3.1 Материалы высокой проводимости

 

К этой группе относятся серебро, медь, алюминий.

Серебро - один из наиболее дефицитных материалов, достаточно широко применяемый в электротехнике и электронике для высокочастотных кабелей, защиты медных проводников от окисления, для электродов некоторых типов керамических и слюдяных конденсаторов в электрических контактах, где оно используется в сплавах с медью, никелем или кадмием, в припоях ПСр-10, ПСр-25 и др. Серебро марки Ср999-999.9 должно иметь примесей не более 0.1%. Удельное электрическое сопротивление ρ=0.015 мкОм м. Механические характеристики серебра невысоки: твердость по Бринелю-25 (немного более золота), предел прочности при разрыве не более 200МПа, относительное удлинение при разрыве ~50%. По сравнению с золотом и платиной имеет пониженную химическую стойкость. Часто применение серебра ограничивается его способностью диффундировать в материалы подложки.

Медь. Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

  1. малое удельное сопротивление (из всех материалов только серебро имеет несколько меньшее удельное сопротивление, чем медь);
  2. достаточно высокая механическая прочность;
  3. удовлетворительная в большинстве случаев стойкость по отношению к коррозии (медь окисляется на воздухе даже в условиях высокой влажности значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах);
  4. хорошая обрабатываемость (медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра);
  5. относительная легкость пайки и сварки.

Медь получают чаще всего  путем переработки сульфидных руд. После нескольких плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехники, обязательно проходит процесс электролитической очистки. Полученные после электролиза катодные пластины меди переплавляют в болванки массой 80—90 кг, которые прокатывают и протягивают в изделия требующегося поперечного сечения. При изготовлении проволоки болванки сперва подвергают горячей прокатке в так называемую катанку диаметром 6,5—7,2 мм; затем катанку протравливают в слабом растворе серной кислоты, чтобы удалить с ее поверхности оксид меди СuО, образующийся при нагреве, а затем уже протягивают без подогрева в проволоку нужных диаметров — до 0,03—0,02 мм.

Стандартная медь, в процентах  по отношению к удельной проводимости которой иногда выражают удельные проводимости металлов и сплавов, в отожженном состоянии при 20 °С имеет удельную проводимость 58 МСм/м, т. е. r = 0,017241 мкОм×м. Твердую медь употребляют там, где надо обеспечить особо высокую механическую прочность, твердость и сопротивляемость истиранию (для контактных проводов, для шин распределительных устройств, для коллекторных пластин электрических машин и пр.). Мягкую медь в виде проволок круглого и прямоугольного сечения применяют главным образом в качестве токопроводящих жил кабелей и обмоточных проводов, где важна гибкость и пластичность (не должна пружинить при изгибе), а не прочность. Медь является сравнительно дорогим и дефицитным материалом. Поэтому она должна расходоваться весьма экономно. Отходы меди на электротехнических предприятиях необходимо тщательно собирать; важно не смешивать их с другими металлами, а также с менее чистой (не электротехнической) медью, чтобы можно было эти отходы переплавить и вновь использовать в качестве электротехнической меди. Медь как проводниковый материал все шире заменяется другими металлами, в особенности алюминием.

Сплавы меди. В отдельных случаях помимо чистой меди в качестве проводникового материала применяются ее сплавы с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь: sр бронз может быть 800—1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п. Введение в медь кадмия при сравнительно малом снижении удельной проводимости значительно повышает механическую прочность и твердость. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (sр —до 1350 МПа). Сплав меди с цинком — латунь — обладает достаточно высоким относительным удлинением перед разрывом при повышенном по сравнению с чистой медью пределе прочности при растяжении. Это дает латуни технологические преимущества перед медью при обработке штамповкой, глубокой вытяжкой и т. п. В соответствии с этим латунь применяют в электротехнике для изготовления всевозможных токопроводящих деталей.

Алюминий является вторым по значению (после меди) проводниковым материалом. Это важнейший представитель так называемых легких металлов (т. е. металлов с плотностью менее 5 Мг/м3); плотность литого алюминия около 2,6, а прокатанного —2,7 Мг/м3. Таким образом, алюминий приблизительно в 3,5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата теплоты, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами — как механическими, так и электрическими. При одинаковых сечении и длине электрическое сопротивление алюминиевого провода больше, чем медного, в 0,028 : 0,0172 = 1,63 раза. Следовательно, чтобы получить алюминиевый провод такого же электрического сопротивления, как и медный, нужно взять его сечение в 1,63 раза большим, т. е. диаметр должен быть в » 1,3 раза больше диаметра медного провода. Отсюда понятно, что если ограничены габариты, то замена меди алюминием затруднена. Если же сравнить по массе два отрезка алюминиевого и медного проводов одной длины и одного и того же сопротивления, то окажется, что алюминиевый провод хотя и толще медного, но легче его приблизительно в два раза:

8,9/(2,7×1,63) »2.

Поэтому для  изготовления проводов одной и той  же проводимости при данной длине алюминий выгоднее меди в том случае, если тонна алюминия дороже тонны меди не более чем в два раза. Весьма важно, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий, содержащий не более 0,5 % примесей, марки А1. Еще более чистый алюминий марки АВОО (не более 0,03 % примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов оксидных конденсаторов. Алюминий наивысшей чистоты АВОООО имеет содержание примесей, не превышающее 0,004 %. Разные примеси в различной степени снижают удельную проводимость g алюминия. Добавки Ni, Si, Zn или Fe при содержании их 0,5 % снижают y отожженного алюминия не более чем на 2—3 %. Более заметное действие оказывают примеси Сu, Ag и Mg, при том же массовом содержании снижающие v алюминия на 5—10 %. Очень сильно снижают g алюминия добавки Ti и Мп.

Прокатка, протяжка и отжиг алюминия аналогичны соответствующим операциям над медью. Из алюминия может прокатываться тонкая (до 6—7 мкм) фольга, применяемая в качестве электродов бумажных и пленочных конденсаторов.

Алюминий весьма активно  окисляется и покрывается тонкой оксидной пленкой с большим электрическим  сопротивлением. Эта пленка предохраняет алюминий от дальнейшей коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов и делает невозможной пайку алюминия обычными методами. Для пайки алюминия применяются специальные пасты-припои или используются ультразвуковые паяльники. В местах контакта алюминия и меди возможна гальваническая коррозия. Если область контакта подвергается действию влаги, то возникает местная гальваническая пара с довольно высоким значением ЭДС, причем полярность этой пары такова, что на внешней поверхности контакта ток идет от алюминия к меди и алюминиевый проводник может быть сильно разрушен коррозией. Поэтому места соединения медных проводников с алюминиевыми должны тщательно защищаться от увлажнения (покрытием лаками и тому подобными способами).

Иногда, например для  замены свинца в защитных кабельных оболочках, используется алюминий с содержанием примесей не более 0,01 % (вместо 0,5 % для обычного проводникового алюминия). Такой особо чистый алюминий сравнительно с обычным более мягок и пластичен и притом обладает повышенной стойкостью по отношению к коррозии.

Алюминиевые сплавы   обладают повышенной механической прочностью.  Примером такого сплава является альдрей содержащий 0,3-0,5% Mg, 0,4-0,7 % Si и 0,2-0,3 % Fe (остальное Аl). Высокие механические свойства альдрей приобретает после особой обработки (закалки катанки—охлаждение в воде при температуре 510—550°С волочение и последующая выдержка при температуре около 150 °С). В альдрее образуется соединение Mg2Si, которое сообщает высокие механические свойства сплаву; при указанной выше тепловой обработке достигается выделение MgoSi из твердого раствора и перевод его в тонкодисперсное состояние.

Рисунок 3.1. Зависимость полного сечения сталеалюминиевого провода марки АС (кривая 1), сечения стального сердечника (кривая 2) и активного электрического сопротивления (при частоте 50 Гц) единицы длины провода (кривая 3) от внешнего диаметра провода D

 

Сталеалюминиевый провод, широко применяемый в линиях электропередачи, представляют собой сердечник, свитый и из стальных жил и обвитый снаружи алюминиевой проволокой. В проводах такого типа механическая прочность определяется главным образом стальным сердечником, а электрическая проводимость — алюминием. Увеличенный наружный диаметр сталеалюминиевого провода по сравнению с медным на линиях передачи высокого напряжения является преимуществом, так как уменьшается опасность возникновения короны вследствие снижения напряженности электрического поля на поверхности провода. На рисунке 3.1 приведены некоторые характеристики сталеалюминиевого провода марки АС.

Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление r (около 0,1 мкОм-м); значение r  стали, т. е. железа с примесью углерода и других элементов, еще выше.

При переменном токе в стали как в ферромагнитном материале заметно сказывается поверхностный эффект, поэтому в соответствии с известными законами электротехники активное сопротивление стальных проводников переменному току выше, чем постоянному току. Кроме того, при переменном токе в стальных проводниках появляются потери мощности на гистерезис. В качестве проводникового материала обычно применяется мягкая сталь с содержанием углерода 0,10—0,15 %, имеющая предел прочности при растяжении sр=700—750 МПа, относительное удлинение перед разрывом Dl/l = 5 —8 % и удельную проводимость g , в б—7 раз меньшую по сравнению с медью. Такую сталь используют в качестве материала для проводов воздушных линий при передаче небольших мощностей. В подобных случаях применение стали может оказаться достаточновыгодным, так как при малой силе тока сечение провода определяется не электрическим сопротивлением, а его механической прочностью.

Информация о работе Металлические проводниковые материалы